{"id":401350,"date":"2024-10-20T04:55:55","date_gmt":"2024-10-20T04:55:55","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/bs-en-iec-61000-4-202022\/"},"modified":"2024-10-26T08:43:27","modified_gmt":"2024-10-26T08:43:27","slug":"bs-en-iec-61000-4-202022","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/bsi\/bs-en-iec-61000-4-202022\/","title":{"rendered":"BS EN IEC 61000-4-20:2022"},"content":{"rendered":"
PDF Pages<\/th>\n | PDF Title<\/th>\n<\/tr>\n | ||||||
---|---|---|---|---|---|---|---|
2<\/td>\n | undefined <\/td>\n<\/tr>\n | ||||||
5<\/td>\n | Annex ZA (normative)Normative references to international publicationswith their corresponding European publications <\/td>\n<\/tr>\n | ||||||
6<\/td>\n | Blank Page <\/td>\n<\/tr>\n | ||||||
7<\/td>\n | English CONTENTS <\/td>\n<\/tr>\n | ||||||
12<\/td>\n | FOREWORD <\/td>\n<\/tr>\n | ||||||
14<\/td>\n | INTRODUCTION <\/td>\n<\/tr>\n | ||||||
15<\/td>\n | 1 Scope <\/td>\n<\/tr>\n | ||||||
16<\/td>\n | 2 Normative references 3 Terms, definitions and abbreviated terms 3.1 Terms and definitions <\/td>\n<\/tr>\n | ||||||
19<\/td>\n | 3.2 Abbreviated terms <\/td>\n<\/tr>\n | ||||||
20<\/td>\n | 4 General 5 TEM waveguide requirements 5.1 General <\/td>\n<\/tr>\n | ||||||
21<\/td>\n | 5.2 General requirements for the use of TEM waveguides 5.2.1 Test volume and maximum EUT size 5.2.2 Validation of usable test volume <\/td>\n<\/tr>\n | ||||||
23<\/td>\n | Tables Table 1 \u2013 Values k for expanded uncertainty with normal distribution <\/td>\n<\/tr>\n | ||||||
28<\/td>\n | 5.3 Special requirements and recommendations for certain types of TEM waveguides 5.3.1 Set-up of open TEM waveguides 5.3.2 Alternative TEM mode verification for a two-port TEM waveguide 5.3.3 TEM mode generation for a four-port TEM waveguide <\/td>\n<\/tr>\n | ||||||
29<\/td>\n | 5.4 Figures for Clause 5 Figures Figure 1 \u2013 Flowchart of TEM mode and field uniformity verification procedurewith the \u201cconstant forward power\u201d method (see 5.2.2.4.1) <\/td>\n<\/tr>\n | ||||||
30<\/td>\n | Figure 2 \u2013 Flowchart of TEM mode and field uniformity verification procedurewith the \u201cconstant field strength\u201d method (see 5.2.2.4.2) <\/td>\n<\/tr>\n | ||||||
31<\/td>\n | 6 Overview of EUT types 6.1 General 6.2 Small EUT 6.3 Large EUT 7 Laboratory test conditions 7.1 General 7.2 Climatic conditions 7.3 Electromagnetic conditions <\/td>\n<\/tr>\n | ||||||
32<\/td>\n | 8 Evaluation and reporting of test results <\/td>\n<\/tr>\n | ||||||
33<\/td>\n | Annex A (normative)Emission measurements in TEM waveguides A.1 Overview A.2 Test equipment A.3 Correlating TEM waveguide voltages to electric field strength data A.3.1 General <\/td>\n<\/tr>\n | ||||||
34<\/td>\n | A.3.2 Correlation algorithms <\/td>\n<\/tr>\n | ||||||
38<\/td>\n | A.4 Emission measurement correction factors A.4.1 Reference emission sources <\/td>\n<\/tr>\n | ||||||
39<\/td>\n | A.4.2 Arrangement of small EUTs A.4.3 Calculation of the small EUT correction factor <\/td>\n<\/tr>\n | ||||||
42<\/td>\n | A.5 Emission measurement procedures in TEM waveguides A.5.1 EUT types A.5.2 EUT arrangement <\/td>\n<\/tr>\n | ||||||
43<\/td>\n | A.6 Test report <\/td>\n<\/tr>\n | ||||||
44<\/td>\n | A.7 Figures for Annex A Figure A.1 \u2013 Routing the exit cable to the corner at the ortho-angleand the lower edge of the test volume in a TEM waveguide (see A.5.2) <\/td>\n<\/tr>\n | ||||||
45<\/td>\n | Figure A.2 \u2013 Basic ortho-axis EUT positioner or manipulator(see 3.1.13, A.4.2, A.5.1.2, A.5.2) <\/td>\n<\/tr>\n | ||||||
46<\/td>\n | Figure A.3 \u2013 Die pattern and axis alignment for an EUT [26] (see A.3.2.3.2) <\/td>\n<\/tr>\n | ||||||
47<\/td>\n | Figure A.4 \u2013 Non-redundant twelve-face and axis orientationsfor a typical EUT [26] (see A.3.2.3.2) <\/td>\n<\/tr>\n | ||||||
48<\/td>\n | Figure A.5 \u2013 Open-area test site (OATS) emission measurements geometry (see A.3.2.4) <\/td>\n<\/tr>\n | ||||||
49<\/td>\n | Annex B (normative)Immunity testing in TEM waveguides B.1 Overview B.2 Test equipment B.2.1 General B.2.2 Description of the test facility <\/td>\n<\/tr>\n | ||||||
50<\/td>\n | B.3 Field uniformity area calibration B.4 Test levels B.5 Test set-up B.5.1 Arrangement of table-top equipment Table B.1 \u2013 Uniform area calibration points Table B.2 \u2013 Test levels <\/td>\n<\/tr>\n | ||||||
51<\/td>\n | B.5.2 Arrangement of floor-standing equipment B.5.3 Arrangement of wiring B.6 Test procedures B.7 Test results and test report <\/td>\n<\/tr>\n | ||||||
52<\/td>\n | B.8 Figures for Annex B Figure B.1 \u2013 Example of test set-up for single-polarization TEM waveguide(see Clause B.5) <\/td>\n<\/tr>\n | ||||||
53<\/td>\n | Figure B.2 \u2013 Uniform area calibration points in a TEM waveguide (see Clause B.3) <\/td>\n<\/tr>\n | ||||||
54<\/td>\n | Annex C (normative)HEMP transient testing in TEM waveguides C.1 Overview C.2 Immunity tests C.2.1 General <\/td>\n<\/tr>\n | ||||||
55<\/td>\n | C.2.2 Radiated test facilities Table C.1 \u2013 Radiated immunity test levels definedfor this document <\/td>\n<\/tr>\n | ||||||
56<\/td>\n | C.2.3 Frequency domain spectrum requirements C.3 Test equipment <\/td>\n<\/tr>\n | ||||||
57<\/td>\n | C.4 Test set-up C.5 Test procedure C.5.1 General <\/td>\n<\/tr>\n | ||||||
58<\/td>\n | C.5.2 Severity level and test exposures C.5.3 Test procedure <\/td>\n<\/tr>\n | ||||||
59<\/td>\n | C.5.4 Test execution C.5.5 Execution of the radiated immunity test <\/td>\n<\/tr>\n | ||||||
60<\/td>\n | C.6 Figure for Annex C Figure C.1 \u2013 Pulse waveform frequency domain spectral magnitudebetween 100 kHz and 300 MHz (see C.2.1) <\/td>\n<\/tr>\n | ||||||
61<\/td>\n | Annex D (informative)TEM waveguide characterization D.1 Overview D.2 Distinction between wave impedance and characteristic impedance <\/td>\n<\/tr>\n | ||||||
62<\/td>\n | D.3 TEM wave D.3.1 General D.3.2 Free-space TEM mode D.3.3 Waveguides <\/td>\n<\/tr>\n | ||||||
63<\/td>\n | D.4 Wave propagation D.4.1 General D.4.2 Spherical propagation D.4.3 Plane wave propagation in free space D.4.4 Velocity of propagation D.5 Polarization <\/td>\n<\/tr>\n | ||||||
64<\/td>\n | D.6 Types of TEM waveguides D.6.1 General <\/td>\n<\/tr>\n | ||||||
65<\/td>\n | D.6.2 Open TEM waveguides (striplines, etc.) D.6.3 Closed TEM waveguides (TEM cells) D.7 Frequency limitations <\/td>\n<\/tr>\n | ||||||
66<\/td>\n | D.8 Figures for Annex D Figure D.1 \u2013 Simple waveguide (no TEM mode) (see D.3.3) Figure D.2 \u2013 Example of waveguides supporting TEM-mode propagation (see D.3.3) Figure D.3 \u2013 E-field polarization vector (see Clause D.5) <\/td>\n<\/tr>\n | ||||||
67<\/td>\n | Figure D.4 \u2013 Simple transmission line model for TEM mode propagation (see D.6.1) Figure D.5 \u2013 One- and two-port TEM waveguide concepts (see D.6.1) Figure D.6 \u2013 Operation of four-port TEM waveguides (see D.6.1) <\/td>\n<\/tr>\n | ||||||
68<\/td>\n | Figure D.7 \u2013 Two-port TEM cell (symmetric septum) (see D.6.1 and D.6.3) <\/td>\n<\/tr>\n | ||||||
69<\/td>\n | Figure D.8 \u2013 One-port TEM cell (asymmetric septum) (see D.6.1 and D.6.3) <\/td>\n<\/tr>\n | ||||||
71<\/td>\n | Figure D.9 \u2013 Stripline (two plates) (see D.6.1 and D.6.2) <\/td>\n<\/tr>\n | ||||||
72<\/td>\n | Figure D.10 \u2013 Stripline (four plates, balanced feed) (see D.6.1) <\/td>\n<\/tr>\n | ||||||
73<\/td>\n | Figure D.11 \u2013 Four-port TEM waveguide (symmetric parallel septa) (see D.6.1 and D.6.3) <\/td>\n<\/tr>\n | ||||||
74<\/td>\n | Annex E (informative)Calibration method for E-field probes in TEM waveguides E.1 Overview E.2 Probe calibration requirements E.2.1 General E.2.2 Calibration frequency range <\/td>\n<\/tr>\n | ||||||
75<\/td>\n | E.2.3 Calibration volume E.2.4 Probe dimensions E.2.5 Perturbations of TEM waveguide fields due to the probe <\/td>\n<\/tr>\n | ||||||
76<\/td>\n | E.2.6 Frequency steps E.2.7 Field strength E.3 Requirements for calibration instrumentation E.3.1 Specifications of TEM waveguide Table E.1 \u2013 Calibration frequencies Table E.2 \u2013 Calibration field strength level <\/td>\n<\/tr>\n | ||||||
77<\/td>\n | E.3.2 Harmonics and spurious signals E.3.3 Probe fixture E.3.4 Measuring net power to a transmitting device using directional couplers <\/td>\n<\/tr>\n | ||||||
78<\/td>\n | E.4 E-field probe calibration E.4.1 Calibration methods E.4.2 Calibration procedure using a two-port TEM waveguide <\/td>\n<\/tr>\n | ||||||
79<\/td>\n | E.4.3 Calibration procedure using one-port TEM waveguide <\/td>\n<\/tr>\n | ||||||
82<\/td>\n | E.5 Figures for Annex E Figure E.1 \u2013 Example of test points for calibration volume validation (see E.2.3) Figure E.2 \u2013 Set-up for validation of probe perturbation (see E.2.5) Figure E.3 \u2013 Set-up for measuring net power toa transmitting device (not to scale) (see E.3.4) <\/td>\n<\/tr>\n | ||||||
83<\/td>\n | Figure E.4 \u2013 Example set-up for E-field probecalibration with two-port TEM waveguide (see E.4.2) Figure E.5 \u2013 Example set-up for E-field probe calibration withone-port TEM waveguide and alternative method (see E.4.3.2) Figure E.6 \u2013 Equivalent circuit of monopole antennaand measuring apparatus (see E.4.3.3) <\/td>\n<\/tr>\n | ||||||
84<\/td>\n | Annex F (informative)Instrumentation uncertainty of emission measurement results F.1 Radiated disturbance measurements using a TEM waveguide F.1.1 Measurand for radiated disturbance measurements using a TEM waveguide F.1.2 Symbols of input quantities common to all disturbance measurements F.1.3 Symbols of input quantities specific to TEM waveguide measurements F.2 Input quantities to be considered for radiated disturbance measurements using a TEM waveguide <\/td>\n<\/tr>\n | ||||||
85<\/td>\n | F.3 Uncertainty budget and rationale for the input quantities for radiated disturbance measurements using a TEM waveguide F.3.1 Uncertainty budget for radiated disturbance measurements using a TEM waveguide Table F.1 \u2013 Uncertainty budget for radiated disturbance measurement resultsusing a TEM waveguide from 30 MHz to 1 000 MHz (example) <\/td>\n<\/tr>\n | ||||||
86<\/td>\n | F.3.2 Rationale for the estimates of input quantities for radiated disturbance measurements using a TEM waveguide Table F.2 \u2013 Uncertainty budget for radiated disturbance measurement resultsusing a TEM waveguide from 1 GHz to 6 GHz (example) <\/td>\n<\/tr>\n | ||||||
88<\/td>\n | Table F.3 \u2013 Values of Slim for 30 MHz to 1 000 MHz <\/td>\n<\/tr>\n | ||||||
89<\/td>\n | Table F.4 \u2013 Values of Slim for 1 GHz to 6 GHz <\/td>\n<\/tr>\n | ||||||
92<\/td>\n | F.4 Figures for Annex F Figure F.1 \u2013 Deviation of the QP detector level indication from the signal level at receiver input for two cases, a sine-wave signal and an impulsive signal with a pulse repetition frequency of 100 Hz <\/td>\n<\/tr>\n | ||||||
93<\/td>\n | Figure F.2 \u2013 Deviation of the peak detector level indication from the signal level at receiver input for two cases, a sine-wave signal and an impulsive signal with a pulse repetition frequency of 100 Hz <\/td>\n<\/tr>\n | ||||||
94<\/td>\n | Annex G (informative)Measurement uncertainty of immunity testingdue to test instrumentation G.1 General symbols G.2 Symbol and definition of the measurand G.3 Symbols for input quantities G.4 Example: Uncertainty budget for immunity test <\/td>\n<\/tr>\n | ||||||
95<\/td>\n | G.5 Rationale for the estimates of input quantities Table G.1 \u2013 Example uncertainty budget of the immunity test level <\/td>\n<\/tr>\n | ||||||
98<\/td>\n | Annex H (informative)Correlation of emission and immunity limitsbetween EMC test facilities H.1 Overview H.2 Dipole in free space (representing FAR set-up) <\/td>\n<\/tr>\n | ||||||
100<\/td>\n | H.3 Dipole in half space (representing OATS or SAC set-up) <\/td>\n<\/tr>\n | ||||||
101<\/td>\n | H.4 Dipole in a TEM-mode transmission line <\/td>\n<\/tr>\n | ||||||
102<\/td>\n | H.5 Dipole in a reverberation chamber <\/td>\n<\/tr>\n | ||||||
103<\/td>\n | H.6 Correlation <\/td>\n<\/tr>\n | ||||||
104<\/td>\n | H.7 Example of emission limits Table H.1 \u2013 Summary of the emission correlation parameters <\/td>\n<\/tr>\n | ||||||
105<\/td>\n | H.8 Figures for Annex H Figure H.1 \u2013 Representation of a short centre-fed dipole anda more general source representing an EUT (see Clause H.2) Figure H.2 \u2013 Vertical source and receiving dipoles located overa perfectly-conducting ground plane of infinite extent (see Clause H.3) <\/td>\n<\/tr>\n | ||||||
106<\/td>\n | Figure H.3 \u2013 Two types of TEM cells with a vertically polarized dipole sourceand the source to receive port geometry defined (see Clause H.4) Figure H.4 \u2013 Reverberation chamber with a source dipole, a stirrer torandomize the fields, and a general receive antenna (see Clause H.5) <\/td>\n<\/tr>\n | ||||||
107<\/td>\n | Figure H.5 \u2013 TEM waveguide Class A and Class B emission limits correlatedfrom CISPR 32 [68] (see Clause H.7) <\/td>\n<\/tr>\n | ||||||
108<\/td>\n | Annex I (informative)TEM waveguide transient characterization I.1 Overview I.2 Test equipment I.3 Test set-up <\/td>\n<\/tr>\n | ||||||
109<\/td>\n | I.4 TEM waveguide characterization by correlation <\/td>\n<\/tr>\n | ||||||
110<\/td>\n | I.5 Quantification of the Pcc I.6 Performable transient test signals <\/td>\n<\/tr>\n | ||||||
111<\/td>\n | I.7 Figures for Annex I Figure I.1 \u2013 Test set-up <\/td>\n<\/tr>\n | ||||||
112<\/td>\n | Figure I.2 \u2013 Signal windowing Figure I.3 \u2013 Example of a heatmap \u2013 Pcc for a test point in the uniform area <\/td>\n<\/tr>\n | ||||||
113<\/td>\n | Bibliography <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":" Electromagnetic compatibility (EMC) – Testing and measurement techniques. Emission and immunity testing in transverse electromagnetic (TEM) waveguides<\/b><\/p>\n |