{"id":398163,"date":"2024-10-20T04:34:13","date_gmt":"2024-10-20T04:34:13","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/ieee-60255-118-1-2018\/"},"modified":"2024-10-26T08:22:37","modified_gmt":"2024-10-26T08:22:37","slug":"ieee-60255-118-1-2018","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/ieee\/ieee-60255-118-1-2018\/","title":{"rendered":"IEEE 60255-118-1-2018"},"content":{"rendered":"
Revision Standard – Active.<\/p>\n
PDF Pages<\/th>\n | PDF Title<\/th>\n<\/tr>\n | ||||||
---|---|---|---|---|---|---|---|
1<\/td>\n | Title page <\/td>\n<\/tr>\n | ||||||
4<\/td>\n | CONTENTS <\/td>\n<\/tr>\n | ||||||
8<\/td>\n | FOREWORD <\/td>\n<\/tr>\n | ||||||
10<\/td>\n | INTRODUCTION <\/td>\n<\/tr>\n | ||||||
12<\/td>\n | 1 Scope 2 Normative references 3 Terms, definitions, and abbreviated terms 3.1 Terms and definitions <\/td>\n<\/tr>\n | ||||||
13<\/td>\n | 3.2 Abbreviated terms <\/td>\n<\/tr>\n | ||||||
14<\/td>\n | 4 Synchrophasor measurement 4.1 Input and output quantities 4.2 Power system signal Figures Figure 1 \u2013 Input and output quantities <\/td>\n<\/tr>\n | ||||||
15<\/td>\n | 4.3 Measurand definitions 4.3.1 Synchrophasor phase angle 4.3.2 Synchrophasor measurand 4.4 Frequency measurand definition <\/td>\n<\/tr>\n | ||||||
16<\/td>\n | 4.5 Rate of change of frequency measurand definition 4.6 Measurement time synchronization 5 Measurement compliance evaluation 5.1 PMU measurement capability 5.2 Measurement evaluation 5.2.1 Synchrophasor measurement evaluation <\/td>\n<\/tr>\n | ||||||
17<\/td>\n | 5.2.2 Frequency and ROCOF measurement evaluation 5.2.3 Measurement response time and delay time <\/td>\n<\/tr>\n | ||||||
18<\/td>\n | 5.2.4 Overshoot and undershoot <\/td>\n<\/tr>\n | ||||||
19<\/td>\n | Figure 2 \u2013 Step transition examples <\/td>\n<\/tr>\n | ||||||
20<\/td>\n | 5.2.5 Measurement reporting latency 5.2.6 Measurement and operational errors <\/td>\n<\/tr>\n | ||||||
21<\/td>\n | 5.3 Measurement reporting 5.3.1 General 5.3.2 Reporting rates 5.3.3 Reporting times 5.4 Measurement compliance 5.4.1 Performance classes Tables Table 1 \u2013 Standard PMU reporting rates <\/td>\n<\/tr>\n | ||||||
22<\/td>\n | 5.4.2 Compliance verification 6 Measurement compliance test and evaluation 6.1 Testing considerations <\/td>\n<\/tr>\n | ||||||
23<\/td>\n | 6.2 Reference and test conditions 6.3 Steady-state compliance <\/td>\n<\/tr>\n | ||||||
24<\/td>\n | Table 2 \u2013 Steady-state synchrophasor measurement requirements <\/td>\n<\/tr>\n | ||||||
26<\/td>\n | 6.4 Dynamic compliance \u2013 Measurement bandwidth Table 3 \u2013 Steady-state frequency and ROCOF measurement requirements <\/td>\n<\/tr>\n | ||||||
28<\/td>\n | Table 4 \u2013 Synchrophasor measurement bandwidth requirements using modulated test signals Table 5 \u2013 Frequency and ROCOF performance requirements under modulation tests <\/td>\n<\/tr>\n | ||||||
29<\/td>\n | 6.5 Dynamic compliance \u2013 Performance during ramp of system frequency <\/td>\n<\/tr>\n | ||||||
31<\/td>\n | 6.6 Dynamic compliance \u2013 Performance under step changes in phase and magnitude Table 6 \u2013 Synchrophasor performance requirements under frequency ramp tests Table 7 \u2013 Frequency and ROCOF performance requirements under frequency ramp tests <\/td>\n<\/tr>\n | ||||||
32<\/td>\n | 6.7 PMU reporting latency compliance Table 8 \u2013 Phasor performance requirements for input step change Table 9 \u2013 Frequency and ROCOF performance requirements for input step change Table 10 \u2013 PMU reporting latency <\/td>\n<\/tr>\n | ||||||
33<\/td>\n | 7 Documentation <\/td>\n<\/tr>\n | ||||||
34<\/td>\n | Annex\u00a0A (informative)Time tagging and dynamic response A.1 Dynamic response A.2 Time tags <\/td>\n<\/tr>\n | ||||||
35<\/td>\n | Figure A.1 \u2013 Frequency step test phase response without groupdelay compensation Figure A.2 \u2013 Frequency step test phase response after group delay compensation <\/td>\n<\/tr>\n | ||||||
36<\/td>\n | A.3 Magnitude step test example Figure A.3 \u2013 Magnitude step test results for 3 different algorithms <\/td>\n<\/tr>\n | ||||||
37<\/td>\n | A.4 PMU time input Figure A.4 \u2013 Magnitude step test example <\/td>\n<\/tr>\n | ||||||
39<\/td>\n | Annex\u00a0B (informative)Parameter representation and definition application examples B.1 General B.2 Representing non-stationary sinusoids <\/td>\n<\/tr>\n | ||||||
40<\/td>\n | B.3 Introduction of definition application examples B.3.1 General B.3.2 Example 1: steady-state at nominal frequency B.3.3 Example 2: steady-state and constant off-nominal frequency <\/td>\n<\/tr>\n | ||||||
41<\/td>\n | B.3.4 Example 3: oscillation of the phase and amplitude of the power signal Figure B.1 \u2013 Sampling a power frequency sinusoid at off-nominal frequency <\/td>\n<\/tr>\n | ||||||
42<\/td>\n | B.3.5 Example 4: constant, non-zero rate of change of frequency <\/td>\n<\/tr>\n | ||||||
43<\/td>\n | B.4 Reconstruction of the power system sinusoidal signal from the synchrophasor <\/td>\n<\/tr>\n | ||||||
44<\/td>\n | Annex\u00a0C (informative)PMU evaluation and testing C.1 General C.2 TVE measurement evaluation <\/td>\n<\/tr>\n | ||||||
45<\/td>\n | C.3 Phase-magnitude relation in TVE and timing Figure C.1 \u2013 Total vector error (TVE) Figure C.2 \u2013 The 1\u00a0% TVE criterion shown on the end of a phasor <\/td>\n<\/tr>\n | ||||||
46<\/td>\n | Figure C.3 \u2013 TVE as a function of magnitude for various phase errors <\/td>\n<\/tr>\n | ||||||
47<\/td>\n | C.4 Evaluation of response to stepped input signals Figure C.4 \u2013 TVE as a function of phase for various magnitude errors <\/td>\n<\/tr>\n | ||||||
48<\/td>\n | Figure C.5 \u2013 Example of step change measurements using a magnitude step at t = 0 <\/td>\n<\/tr>\n | ||||||
49<\/td>\n | C.5 Harmonic distortion test signal phasing C.6 ROCOF limits C.6.1 General Table C.1 \u2013 Harmonic phase sequence in a balanced three-phase system <\/td>\n<\/tr>\n | ||||||
50<\/td>\n | C.6.2 Derivation <\/td>\n<\/tr>\n | ||||||
51<\/td>\n | C.7 PMU reporting latency Figure C.6 \u2013 PMU reporting latency example (actual PMU measurement) <\/td>\n<\/tr>\n | ||||||
52<\/td>\n | Annex\u00a0D (informative)Reference signal processing models D.1 General D.2 Basic synchrophasor estimation model <\/td>\n<\/tr>\n | ||||||
53<\/td>\n | D.3 Timestamp compensation for low-pass filter group delay Figure D.1 \u2013 Single phase section of the PMU phasor signal processing model <\/td>\n<\/tr>\n | ||||||
54<\/td>\n | D.4 Positive sequence, frequency, and ROCOF Figure D.2 \u2013 Complete PMU signal processing model <\/td>\n<\/tr>\n | ||||||
55<\/td>\n | D.5 P Class reference model for phasor D.6 P class filter details <\/td>\n<\/tr>\n | ||||||
56<\/td>\n | Figure D.3 \u2013 P class filter coefficient example (N = 2 \u00d7 (16 \u2013 1) = 30) Figure D.4 \u2013 P class filter response as a function of frequency <\/td>\n<\/tr>\n | ||||||
57<\/td>\n | D.7 M class reference model for phasor <\/td>\n<\/tr>\n | ||||||
58<\/td>\n | Figure D.5 \u2013 Reference algorithm filter frequencyresponse mask specification for M Class <\/td>\n<\/tr>\n | ||||||
59<\/td>\n | D.8 Data rate reduction model Figure D.6 \u2013 M class filter coefficient example Table D.1 \u2013 M class low pass filter parameters <\/td>\n<\/tr>\n | ||||||
60<\/td>\n | D.9 Trade-offs in the reference model D.9.1 Immunity to off-nominal components, reporting latency and time alignment Figure D.7 \u2013 Data rate reduction signal processing model Figure D.8 \u2013 Factors affecting estimation <\/td>\n<\/tr>\n | ||||||
61<\/td>\n | D.9.2 Response time and the accuracy of synchrophasors, frequency and ROCOF measurements Figure D.9 \u2013 Reference filter magnitude frequency response with Fs = 60 fps <\/td>\n<\/tr>\n | ||||||
63<\/td>\n | Annex\u00a0E (informative)Synchrophasor measurement using sampled value input to PMU E.1 General E.2 Creation of sampled values Figure E.1 \u2013 Synchrophasors having sampled values as inputs <\/td>\n<\/tr>\n | ||||||
64<\/td>\n | E.3 Sources of synchrophasor error when using sampled values E.4 Performance E.4.1 General E.4.2 Steady-state performance considerations <\/td>\n<\/tr>\n | ||||||
65<\/td>\n | E.4.3 Dynamic performance considerations E.4.4 Latency <\/td>\n<\/tr>\n | ||||||
66<\/td>\n | E.5 Proposed changes to performance requirements Table E.1 \u2013 Summary of proposed performance requirement changes <\/td>\n<\/tr>\n | ||||||
68<\/td>\n | Annex\u00a0G (normative)Extended accuracy specification for PMUs in steady-state G.1 General G.2 Applicable conditions G.3 Accuracy specification Table G.1 \u2013 Conditions for extended accuracy tests <\/td>\n<\/tr>\n | ||||||
69<\/td>\n | G.4 Usage examples G.5 Preferred accuracy ranges G.6 Testing issues G.6.1 Testing for improved accuracy <\/td>\n<\/tr>\n | ||||||
70<\/td>\n | G.6.2 Testing at currents exceeding continuous thermal rating G.6.3 Environmental considerations <\/td>\n<\/tr>\n | ||||||
71<\/td>\n | Annex\u00a0H (informative)Generator voltage and power angle measurement H.1 General H.2 Measurement methods H.3 Input signal H.4 Measuring process <\/td>\n<\/tr>\n | ||||||
72<\/td>\n | Figure H.1 \u2013 Phasor diagram under no-load conditions Figure H.2 \u2013 Phasor diagram with load on generator <\/td>\n<\/tr>\n | ||||||
73<\/td>\n | Annex\u00a0I (normative)Extended PMU bandwidth classes I.1 General I.2 Bandwidth determination I.3 Enhanced bandwidth classes Table I.1 \u2013 Conditions for extended bandwidth testing <\/td>\n<\/tr>\n | ||||||
74<\/td>\n | I.4 Testing issues <\/td>\n<\/tr>\n | ||||||
75<\/td>\n | Bibliography <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":" IEEE\/IEC International Standard – Measuring relays and protection equipment – Part 118-1: Synchrophasor for power systems – Measurements<\/b><\/p>\n |