{"id":240013,"date":"2024-10-19T15:42:21","date_gmt":"2024-10-19T15:42:21","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/bs-en-61810-22017-tc\/"},"modified":"2024-10-25T10:25:30","modified_gmt":"2024-10-25T10:25:30","slug":"bs-en-61810-22017-tc","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/bsi\/bs-en-61810-22017-tc\/","title":{"rendered":"BS EN 61810-2:2017 – TC"},"content":{"rendered":"
IEC 61810-2:2017 covers test conditions and provisions for the evaluation of endurance tests using appropriate statistical methods to obtain reliability characteristics for relays. This document applies to electromechanical elementary relays considered as non-repaired items (i.e. items which are not repaired after failure). This document does not cover procedures for electromechanical elementary relays where enhanced requirements for the verification of reliability apply. This edition includes the following significant technical changes with respect to the previous edition: – not only graphical but also numerical methods are added; – reduction of number of samples in specified cases; – new subclauses of confidence intervals are added; – the WeiBayes approach is added to facilitate compliance tests (routine test) with lower effort; – annexes have been restructured into an Annex A for data analysis (normative) and Annex B (informative) where various examples of the data analysis are given; – the former Annex C has been incorporated into the modified Annex B; – a new Annex C replaces the old Annex D.<\/p>\n
PDF Pages<\/th>\n | PDF Title<\/th>\n<\/tr>\n | ||||||
---|---|---|---|---|---|---|---|
58<\/td>\n | National foreword <\/td>\n<\/tr>\n | ||||||
63<\/td>\n | English CONTENTS <\/td>\n<\/tr>\n | ||||||
65<\/td>\n | FOREWORD <\/td>\n<\/tr>\n | ||||||
67<\/td>\n | INTRODUCTION <\/td>\n<\/tr>\n | ||||||
68<\/td>\n | 1 Scope 2 Normative references 3 Terms and definitions <\/td>\n<\/tr>\n | ||||||
71<\/td>\n | 3.21 Terms and definitions related to tests 4 General considerations <\/td>\n<\/tr>\n | ||||||
72<\/td>\n | 5 Test conditions 5.1 Sample items <\/td>\n<\/tr>\n | ||||||
73<\/td>\n | 5.2 Environmental conditions 5.3 Operating conditions <\/td>\n<\/tr>\n | ||||||
74<\/td>\n | 5.4 Test equipment 6 Failure criteria 7 Output data 8 Analysis of output data 9 Presentation of reliability measures <\/td>\n<\/tr>\n | ||||||
76<\/td>\n | Annex A (normative) Data analysis A.1 General A.2 Abbreviations A.3 Symbols and definitions <\/td>\n<\/tr>\n | ||||||
77<\/td>\n | A.4 Weibull distribution <\/td>\n<\/tr>\n | ||||||
78<\/td>\n | A.5 Procedure A.5.1 Graphical methods <\/td>\n<\/tr>\n | ||||||
79<\/td>\n | Figures Figure A.1 \u2013 An example of Weibull probability paper <\/td>\n<\/tr>\n | ||||||
81<\/td>\n | Figure A.2 \u2013 An example of cumulative hazard plotting paper Figure A.3 \u2013 Plotting of data points and drawing of a straight line <\/td>\n<\/tr>\n | ||||||
82<\/td>\n | Figure A.4 \u2013 Estimation of distribution parameters <\/td>\n<\/tr>\n | ||||||
83<\/td>\n | A.5.2 Numerical methods <\/td>\n<\/tr>\n | ||||||
84<\/td>\n | A.5.3 Confidence Intervals <\/td>\n<\/tr>\n | ||||||
86<\/td>\n | A.5.4 WeiBayes Approach <\/td>\n<\/tr>\n | ||||||
87<\/td>\n | Tables Table A.1 \u2013 Confidence levels for WeiBayes without failures <\/td>\n<\/tr>\n | ||||||
89<\/td>\n | Annex B (informative) Example of data analysis B.1 Graphical methods case study (cumulative hazard plot) B.1.1 General B.1.2 Procedure of cumulative hazard plot Table B.1 \u2013 Worksheet for cumulative hazard analysis <\/td>\n<\/tr>\n | ||||||
91<\/td>\n | B.1.3 Example applied to life test data Figure B.1 \u2013 Estimation of distribution parameters <\/td>\n<\/tr>\n | ||||||
92<\/td>\n | Table B.2 \u2013 Example worksheet <\/td>\n<\/tr>\n | ||||||
93<\/td>\n | Figure B.2 \u2013 Cumulative hazard plots <\/td>\n<\/tr>\n | ||||||
94<\/td>\n | B.2 Numerical methods case study (Weibull probability) B.2.1 General B.2.2 Distribution parameters B.2.3 Mean cycles to failure (MCTF) Table B.3 \u2013 First twenty failures in this example <\/td>\n<\/tr>\n | ||||||
95<\/td>\n | B.2.4 Value of B10 B.2.5 Mean time to failure (MTTF) B.3 Confidence intervals case study B.3.1 General B.3.2 Interval estimation of \u03b2 <\/td>\n<\/tr>\n | ||||||
96<\/td>\n | B.3.3 Interval estimation of \u03b7 B.3.4 Lower confidence limit for B10 <\/td>\n<\/tr>\n | ||||||
97<\/td>\n | B.3.5 Lower confidence limit for R B.4 WeiBayes case study <\/td>\n<\/tr>\n | ||||||
98<\/td>\n | Figure B.3 \u2013 Type test versus WeiBayes analysed periodic test <\/td>\n<\/tr>\n | ||||||
99<\/td>\n | Annex C (informative) Statistical tables C.1 Table of gamma function C.2 Fractiles of the normal distribution Table C.1 \u2013 Values of the gamma function <\/td>\n<\/tr>\n | ||||||
100<\/td>\n | Table C.2 \u2013 Fractiles of the normal distribution <\/td>\n<\/tr>\n | ||||||
101<\/td>\n | Annex D (informative) Success run \u2013 Test without failures D.1 General D.2 Confidence level and minimum reliability <\/td>\n<\/tr>\n | ||||||
102<\/td>\n | D.3 Example Table D.1 \u2013 Number of samples and life cycles <\/td>\n<\/tr>\n | ||||||
103<\/td>\n | Bibliography <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":" Tracked Changes. Electromechanical elementary relays – Reliability<\/b><\/p>\n |