{"id":126903,"date":"2024-10-19T05:42:03","date_gmt":"2024-10-19T05:42:03","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/bsi-pd-iec-ts-63042-1022021\/"},"modified":"2024-10-24T23:22:51","modified_gmt":"2024-10-24T23:22:51","slug":"bsi-pd-iec-ts-63042-1022021","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/bsi\/bsi-pd-iec-ts-63042-1022021\/","title":{"rendered":"BSI PD IEC TS 63042-102:2021"},"content":{"rendered":"

PDF Catalog<\/h4>\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
PDF Pages<\/th>\nPDF Title<\/th>\n<\/tr>\n
2<\/td>\nundefined <\/td>\n<\/tr>\n
4<\/td>\nCONTENTS <\/td>\n<\/tr>\n
8<\/td>\nFOREWORD <\/td>\n<\/tr>\n
10<\/td>\nINTRODUCTION <\/td>\n<\/tr>\n
11<\/td>\n1 Scope
2 Normative references
3 Terms and definitions
4 Objective and key issues of UHV AC transmission application
4.1 Objective <\/td>\n<\/tr>\n
12<\/td>\n4.2 Key application issues
5 Required studies on UHV AC system planning and design
5.1 General <\/td>\n<\/tr>\n
13<\/td>\n5.2 Required studies
5.3 Required analysis tools <\/td>\n<\/tr>\n
14<\/td>\nFigures
Figure 1 \u2013 Analysis tool by time domain <\/td>\n<\/tr>\n
15<\/td>\n6 UHV AC system planning
6.1 General
6.1.1 Introductory remarks
6.1.2 Transmission capacity considering routes and line types to use
6.1.3 Reactive power management issues <\/td>\n<\/tr>\n
16<\/td>\n6.1.4 Environmental issues
Figure 2 \u2013 Flowchart of reactive power compensation configuration <\/td>\n<\/tr>\n
17<\/td>\n6.2 Scenario for system planning
6.3 Scenario for network planning procedure
6.3.1 Power transmission capacity
Figure 3 \u2013 \u03c0 equivalent circuit <\/td>\n<\/tr>\n
18<\/td>\n6.3.2 System voltage
6.3.3 Route selection <\/td>\n<\/tr>\n
19<\/td>\n6.3.4 Series compensation
6.4 Required parameters
6.5 Transmission network (topology) <\/td>\n<\/tr>\n
20<\/td>\n6.6 Reliability <\/td>\n<\/tr>\n
21<\/td>\n7 UHV AC system design
7.1 General
7.2 Reactive power management
7.3 Reclosing schemes <\/td>\n<\/tr>\n
22<\/td>\nFigure 4 \u2013 Four-legged reactor <\/td>\n<\/tr>\n
23<\/td>\n7.4 Delayed current zero phenomenon
Figure 5 \u2013 One typical reclosing sequence of high speed earthing switches (HSESs)
Tables
Table 1 \u2013 Specification of reclosing scheme <\/td>\n<\/tr>\n
24<\/td>\n7.5 Protection and control system
7.6 Insulation design (cost effectiveness) <\/td>\n<\/tr>\n
25<\/td>\nFigure 6 \u2013 Procedure for insulation design <\/td>\n<\/tr>\n
26<\/td>\nAnnex A (informative)History of development of UHV AC transmission technologies
A.1 General
A.2 History of development in the USA
A.3 History of development in former USSR and Russia
A.4 History of development in Italy <\/td>\n<\/tr>\n
27<\/td>\nA.5 History of development in Japan
A.6 History of development in China
A.7 History of development in India <\/td>\n<\/tr>\n
28<\/td>\nAnnex B (informative)Experiences relating to UHV AC transmission development
B.1 Project development in Italy
B.1.1 Background (including network development)
B.1.2 Demand analysis and scenario of application
B.1.3 Project overview
Figure B.1 \u2013 Demand situation in Italy <\/td>\n<\/tr>\n
29<\/td>\nB.1.4 UHV system planning
Figure B.2 \u2013 UHV transmission lines in Italy as originally planned in ’70 <\/td>\n<\/tr>\n
30<\/td>\nB.1.5 UHV system design
Figure B.3 \u2013 SPIRA system and SICRE system <\/td>\n<\/tr>\n
31<\/td>\nB.1.6 Laboratory and field tests
Figure B.4 \u2013 Preliminary system design <\/td>\n<\/tr>\n
32<\/td>\nFigure B.5 \u2013 Field testing of UHV equipment
Table B.1 \u2013 Specifications of 1 100 kV transformer <\/td>\n<\/tr>\n
33<\/td>\nTable B.2 \u2013 Specifications of pilot plant (substation)
Table B.3 \u2013 Specifications of pilot plant (cable) <\/td>\n<\/tr>\n
34<\/td>\nB.2 Project development in China
B.2.1 Background
B.2.2 Project overview
Figure B.6 \u2013 UHV AC transmission projects implemented in China <\/td>\n<\/tr>\n
35<\/td>\nB.2.3 Changzhi-Nanyang-Jingmen UHV AC extension project
Figure B.7 \u2013 Single-line diagram of Changzhi-Nanyang-Jingmen UHV AC pilot project
Table B.4 \u2013 Parameters of substation and switching station of Changzhi-Nanyang-Jingmen UHV AC pilot project
Table B.5 \u2013 Parameters of transmission lines of Changzhi-Nanyang-Jingmen UHV AC pilot project <\/td>\n<\/tr>\n
36<\/td>\nFigure B.8 \u2013 Artificial grounding test of UHV series capacitors in China
Figure B.9 \u2013 Single-line diagram of Huainan-Zhebei-Shanghai double-circuit UHV AC project <\/td>\n<\/tr>\n
37<\/td>\nB.2.4 Overvoltage mitigation and insulation coordination
Figure B.10 \u2013 Generator integrated into a UHV system through a UHV step-up transformer
Table B.6 \u2013 Main system parameters of UHV AC projects in China <\/td>\n<\/tr>\n
38<\/td>\nB.2.5 Insulation coordination
Table B.7 \u2013 Main system parameters of UHV arrester <\/td>\n<\/tr>\n
39<\/td>\nTable B.8 \u2013 Required minimum value of clearance of the 1 100 kV transmission line
Table B.9 \u2013 Minimum clearance of UHV substation (metres) <\/td>\n<\/tr>\n
40<\/td>\nB.2.6 Laboratory and field tests
Figure B.11 \u2013Hubei Wuhan UHV AC test base
Figure B.12 \u2013Hebei Bazhou UHV tower test base
Table B.10 \u2013 Overvoltage withstand level of UHV AC projects in China <\/td>\n<\/tr>\n
42<\/td>\nB.3 Project development in India
B.3.1 Background (including network development)
B.3.2 Demand analysis and scenario of application
B.3.3 Project overview <\/td>\n<\/tr>\n
43<\/td>\nB.3.4 Development of 1 200 kV national test station in India
Figure B.13 \u2013 1 200 kV national test station (India) <\/td>\n<\/tr>\n
44<\/td>\nB.3.5 POWERGRID’s 1 200 kV transmission system
Figure B.14 \u2013 Power flow from Satna to Bina diverted via a 1 200 kV test station (India) <\/td>\n<\/tr>\n
45<\/td>\nB.3.6 UHV AC technology design \u2013 Insulation coordination
Figure B.15 \u2013 Schematic of 1 200 kV UHV AC line
Table B.11 \u2013 Basic technical parameters for 1 200 kV UHV AC system selected in India <\/td>\n<\/tr>\n
46<\/td>\nB.3.7 Insulation design for substation
Figure B.16 \u2013 Typical V-I characteristic of 1 200 kV MOSA <\/td>\n<\/tr>\n
47<\/td>\nB.4 Project development in Japan
B.4.1 Background (including network development)
Figure B.17 \u2013 Sequence of events for calculation of surge arrester energy accumulation
Table B.12 \u2013 TOV and energy absorption by surge arrester <\/td>\n<\/tr>\n
48<\/td>\nB.4.2 Demand analysis and scenario of application
B.4.3 Project overview
Figure B.18 \u2013 Trend of peak demand in Japan <\/td>\n<\/tr>\n
49<\/td>\nB.4.4 UHV system planning
B.4.5 UHV system design
Figure B.19 \u2013 UHV transmission line for each construction year in Japan
Figure B.20 \u2013 Concept for transmission capacity enhancement with short-circuit current restriction <\/td>\n<\/tr>\n
50<\/td>\nFigure B.21 \u2013 Insulation design sequence of 1 100 kV transmission lines’ air gap clearances <\/td>\n<\/tr>\n
51<\/td>\nFigure B.22 \u2013 UHV designed transmission line in TEPCO
Table B.13 \u2013 Requirement against large charging MVA
Table B.14 \u2013 Specifications of substation insulation design <\/td>\n<\/tr>\n
52<\/td>\nB.4.6 Laboratory and field tests
Figure B.23 \u2013 Field testing of UHV substation equipment since 1996
Table B.15 \u2013 Specifications of 1 100 kV transformer <\/td>\n<\/tr>\n
53<\/td>\nTable B.16 \u2013 Specifications of 1 100 kV GIS
Table B.17 \u2013 Example of field test \u2013 Measurement items of transformer <\/td>\n<\/tr>\n
54<\/td>\nTable B.18 \u2013 Example of field test \u2013 Measurement items of GIS <\/td>\n<\/tr>\n
55<\/td>\nAnnex C (informative)Summary of system technologies specific to UHV AC transmission systems
C.1 Technologies used in China
C.1.1 Transformer
Figure C.1 \u2013 UHV AC transformer
Table C.1 \u2013 Main parameters of UHV AC typical transformer <\/td>\n<\/tr>\n
56<\/td>\nC.1.2 UHV shunt reactor and reactive compensation at tertiary side of transformer
Figure C.2 \u2013 UHV AC shunt reactor
Table C.2 \u2013 Main parameters of UHV AC reactive power compensation equipment <\/td>\n<\/tr>\n
57<\/td>\nC.1.3 Switchgear
Figure C.3 \u2013 Reactor and capacitor at tertiary side of UHV transformer
Table C.3 \u2013 Main parameters of UHV AC circuit-breaker <\/td>\n<\/tr>\n
58<\/td>\nFigure C.4 \u2013 UHV GIS
Figure C.5 \u2013 UHV MTS <\/td>\n<\/tr>\n
59<\/td>\nC.1.4 Series capacitor (SC)
Figure C.6 \u2013 UHV air insulated disconnectors <\/td>\n<\/tr>\n
60<\/td>\nFigure C.7 \u2013 Single-line diagram of UHV series capacitor
Figure C.8 \u2013 UHV series capacitor
Table C.4 \u2013 Rated values of UHV SCs in Changzhi-Nanyang-Jingmen UHV extension project <\/td>\n<\/tr>\n
61<\/td>\nC.1.5 Gas-insulated transmission line (GIL)
Figure C.9 \u2013 UHV GIL tunnel below Yangtze River
Figure C.10 \u2013 Inside a UHV GIL tunnel during assembly <\/td>\n<\/tr>\n
62<\/td>\nC.2 Technologies used in India
C.2.1 UHV AC transformer
Table C.5 \u2013 Specifications of 333 MVA transformer for the 1 200 kV test station <\/td>\n<\/tr>\n
63<\/td>\nC.2.2 Surge arrester
Figure C.11 \u2013 333 MVA transformer for the 1 200 kV test station
Table C.6 \u2013 Technical specifications of surge arrester <\/td>\n<\/tr>\n
64<\/td>\nC.2.3 Circuit-breakers
Figure C.12 \u2013 First prototype of 850 kV surge arrester for 1 200 kV system
Table C.7 \u2013 Technical parameters of UHV circuit-breaker <\/td>\n<\/tr>\n
65<\/td>\nC.2.4 Instrument transformers
Figure C.13 \u2013 UHV circuit-breaker in India
Table C.8 \u2013 Parameters of instrument transformer <\/td>\n<\/tr>\n
66<\/td>\nC.3 Technologies used in Japan
C.3.1 Switch gear
Figure C.14 \u2013 Instrument transformer <\/td>\n<\/tr>\n
67<\/td>\nC.3.2 Surge arrester
Figure C.15 \u2013 1 100 kV gas circuit-breaker
Figure C.16 \u2013 Resistor-assisted disconnecting operation
Table C.9 \u2013 Specification of gas circuit-breaker <\/td>\n<\/tr>\n
68<\/td>\nFigure C.17 \u2013 Surge arrester with low protection level
Table C.10 \u2013 Specifications of surge arrester <\/td>\n<\/tr>\n
69<\/td>\nBibliography <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":"

UHV AC transmission systems – General system design<\/b><\/p>\n\n\n\n\n
Published By<\/td>\nPublication Date<\/td>\nNumber of Pages<\/td>\n<\/tr>\n
BSI<\/b><\/a><\/td>\n2024<\/td>\n70<\/td>\n<\/tr>\n<\/tbody>\n<\/table>\n","protected":false},"featured_media":126904,"template":"","meta":{"rank_math_lock_modified_date":false,"ep_exclude_from_search":false},"product_cat":[543,2641],"product_tag":[],"class_list":{"0":"post-126903","1":"product","2":"type-product","3":"status-publish","4":"has-post-thumbnail","6":"product_cat-29-240-01","7":"product_cat-bsi","9":"first","10":"instock","11":"sold-individually","12":"shipping-taxable","13":"purchasable","14":"product-type-simple"},"_links":{"self":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product\/126903","targetHints":{"allow":["GET"]}}],"collection":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product"}],"about":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/types\/product"}],"wp:featuredmedia":[{"embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/media\/126904"}],"wp:attachment":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/media?parent=126903"}],"wp:term":[{"taxonomy":"product_cat","embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product_cat?post=126903"},{"taxonomy":"product_tag","embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product_tag?post=126903"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}