{"id":426612,"date":"2024-10-20T07:02:54","date_gmt":"2024-10-20T07:02:54","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/bs-en-iec-62657-22022-tc-2023\/"},"modified":"2024-10-26T13:19:51","modified_gmt":"2024-10-26T13:19:51","slug":"bs-en-iec-62657-22022-tc-2023","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/bsi\/bs-en-iec-62657-22022-tc-2023\/","title":{"rendered":"BS EN IEC 62657-2:2022 – TC 2023"},"content":{"rendered":"
This document: – specifies the fundamental assumptions, concepts, parameters, and procedures for wireless communication coexistence; – specifies coexistence parameters and how they are used in an application requiring wireless coexistence; – provides guidelines, requirements, and best practices for wireless communication’s availability and performance in an industrial automation plant; it covers the life-cycle of wireless communication coexistence; – helps the work of all persons involved with the relevant responsibilities to cope with the critical aspects at each phase of life-cycle of the wireless communication coexistence management in an industrial automation plant. Life-cycle aspects include: planning, design, installation, implementation, operation, maintenance, administration and training; – provides a common point of reference for wireless communication coexistence for industrial automation sites as a homogeneous guideline to help the users assess and gauge their plant efforts; – deals with the operational aspects of wireless communication coexistence regarding both the static human\/tool-organization and the dynamic network self-organization. This document provides a major contribution to national and regional regulations. It does not exempt devices from conforming to all requirements of national and regional regulations.<\/p>\n
PDF Pages<\/th>\n | PDF Title<\/th>\n<\/tr>\n | ||||||
---|---|---|---|---|---|---|---|
1<\/td>\n | 30471348 <\/td>\n<\/tr>\n | ||||||
155<\/td>\n | A-30416205 <\/td>\n<\/tr>\n | ||||||
156<\/td>\n | undefined <\/td>\n<\/tr>\n | ||||||
159<\/td>\n | Annex ZA (normative)Normative references to international publicationswith their corresponding European publications <\/td>\n<\/tr>\n | ||||||
161<\/td>\n | English CONTENTS <\/td>\n<\/tr>\n | ||||||
166<\/td>\n | FOREWORD <\/td>\n<\/tr>\n | ||||||
168<\/td>\n | INTRODUCTION <\/td>\n<\/tr>\n | ||||||
170<\/td>\n | 1 Scope 2 Normative references <\/td>\n<\/tr>\n | ||||||
171<\/td>\n | 3 Terms, definitions, abbreviated terms and conventions 3.1 Terms and definitions <\/td>\n<\/tr>\n | ||||||
186<\/td>\n | 3.2 Abbreviated terms <\/td>\n<\/tr>\n | ||||||
187<\/td>\n | 3.3 Conventions 4 Coexistence concept in industrial automation 4.1 Overview <\/td>\n<\/tr>\n | ||||||
189<\/td>\n | 4.2 Objective Tables Table 1 \u2013 Example of a classification of application communication requirements <\/td>\n<\/tr>\n | ||||||
190<\/td>\n | Figures Figure 1 \u2013 Issues of consideration Figure 2 \u2013 Applications using frequency spectrum <\/td>\n<\/tr>\n | ||||||
191<\/td>\n | 4.3 Necessity to implement a coexistence management <\/td>\n<\/tr>\n | ||||||
192<\/td>\n | 4.4 Interference potential <\/td>\n<\/tr>\n | ||||||
194<\/td>\n | 4.5 Ancillary conditions <\/td>\n<\/tr>\n | ||||||
195<\/td>\n | 4.6 Requirements to wireless devices for support of coexistence management 4.7 Concepts 4.7.1 Manual coexistence management Figure 3 \u2013 Progression of expense to achieve coexistencecorresponding to the application classes <\/td>\n<\/tr>\n | ||||||
196<\/td>\n | 4.7.2 Automated non-collaborative coexistence management 4.7.3 Automated collaborative coexistence management <\/td>\n<\/tr>\n | ||||||
197<\/td>\n | 4.8 Best practices to achieve coexistence <\/td>\n<\/tr>\n | ||||||
198<\/td>\n | Figure 4 \u2013 Separation of wireless systemsaccording to frequency and time <\/td>\n<\/tr>\n | ||||||
199<\/td>\n | 4.9 Coexistence conceptual model <\/td>\n<\/tr>\n | ||||||
200<\/td>\n | Figure 5 \u2013 Coexistence conceptual model <\/td>\n<\/tr>\n | ||||||
201<\/td>\n | 4.10 Coexistence management and selection of a wireless solution Figure 6 \u2013 Flow chart of the coexistence conceptual model <\/td>\n<\/tr>\n | ||||||
202<\/td>\n | Figure 7 \u2013 Selection of a wireless systemin the coexistence management process <\/td>\n<\/tr>\n | ||||||
203<\/td>\n | 4.11 Coexistence management system 5 Coexistence management parameters 5.1 General 5.1.1 Definition and usage of parameters 5.1.2 Physical link <\/td>\n<\/tr>\n | ||||||
204<\/td>\n | 5.2 Adjacent channel selectivity 5.3 Antenna gain 5.4 Antenna radiation pattern 5.5 Antenna type <\/td>\n<\/tr>\n | ||||||
205<\/td>\n | 5.6 Communication availability 5.7 Communication reliability 5.8 Bit rate of physical link 5.9 Blocked frequency list 5.10 Centre frequency <\/td>\n<\/tr>\n | ||||||
206<\/td>\n | 5.11 Area of operation 5.12 Communication load <\/td>\n<\/tr>\n | ||||||
207<\/td>\n | Figure 8 \u2013 Communication load in case of two wireless devices <\/td>\n<\/tr>\n | ||||||
208<\/td>\n | 5.13 Cut-off frequency Figure 9 \u2013 Communication load in the case of several wireless devices <\/td>\n<\/tr>\n | ||||||
209<\/td>\n | 5.14 Data throughput 5.15 Distance between wireless devices Figure 10 \u2013 Cut-off frequencies derived from maximum power level <\/td>\n<\/tr>\n | ||||||
210<\/td>\n | 5.16 Duty cycle Figure 11 \u2013 Distance of the wireless devices <\/td>\n<\/tr>\n | ||||||
211<\/td>\n | Figure 12 \u2013 Duty cycle Table 2 \u2013 Application profile dependent observation time values <\/td>\n<\/tr>\n | ||||||
212<\/td>\n | 5.17 Dwell time Figure 13 \u2013 Maximum dwell time <\/td>\n<\/tr>\n | ||||||
213<\/td>\n | 5.18 Equivalent isotropic radiated power 5.19 Equivalent radiated power 5.20 Frequency band 5.21 Frequency bandwidth <\/td>\n<\/tr>\n | ||||||
214<\/td>\n | 5.22 Frequency channel 5.23 Frequency hopping sequence Table 3 \u2013 Parameter options for frequency channel <\/td>\n<\/tr>\n | ||||||
215<\/td>\n | 5.24 Future expansion plan 5.25 Geographical dimension of the plant 5.26 Infrastructure device 5.27 Initiation of data transmission 5.28 Interference type <\/td>\n<\/tr>\n | ||||||
216<\/td>\n | 5.29 Intervisibility 5.30 ISM application 5.31 Length of user data per transfer interval 5.32 Limitation from neighbours of the plant 5.33 Maximum number of retransmissions <\/td>\n<\/tr>\n | ||||||
217<\/td>\n | 5.34 Mechanism for adaptivity 5.35 Medium access control mechanism 5.36 Medium utilization factor <\/td>\n<\/tr>\n | ||||||
218<\/td>\n | 5.37 Message 5.38 Modulation 5.39 Natural environmental condition 5.40 Network topology <\/td>\n<\/tr>\n | ||||||
219<\/td>\n | 5.41 Number of consecutive lost messages 5.42 Object movement 5.43 Operating time between failures 5.44 Message loss ratio <\/td>\n<\/tr>\n | ||||||
220<\/td>\n | 5.45 Position of wireless devices 5.46 Power spectral density Figure 14 \u2013 Power spectral density of an IEEE 802.15.4 system <\/td>\n<\/tr>\n | ||||||
221<\/td>\n | 5.47 Purpose of the automation application 5.48 Receiver blocking 5.49 Receiver maximum input level 5.50 Receiver sensitivity 5.51 Regional radio regulations <\/td>\n<\/tr>\n | ||||||
222<\/td>\n | 5.52 Relative movement 5.53 Response time 5.54 Security level <\/td>\n<\/tr>\n | ||||||
223<\/td>\n | 5.55 Spatial coverage of the wireless communication system 5.56 Spatial extent of the application 5.57 Spurious response 5.58 Survival time 5.59 Total radiated power 5.60 Transfer interval <\/td>\n<\/tr>\n | ||||||
224<\/td>\n | 5.61 Transmission gap Figure 15 \u2013 Communication cycle, application event interval and machine cycle <\/td>\n<\/tr>\n | ||||||
225<\/td>\n | 5.62 Transmission time Figure 16 \u2013 Transmission gap <\/td>\n<\/tr>\n | ||||||
226<\/td>\n | Figure 17 \u2013 Example of the density functions of transmission time <\/td>\n<\/tr>\n | ||||||
227<\/td>\n | Figure 18 \u2013 Example of the distribution functions of transmission time <\/td>\n<\/tr>\n | ||||||
228<\/td>\n | 5.63 Transmitter output power 5.64 Transmitter sequence <\/td>\n<\/tr>\n | ||||||
229<\/td>\n | Figure 19 \u2013 Transmitter sequence <\/td>\n<\/tr>\n | ||||||
230<\/td>\n | 5.65 Transmitter spectral mask 5.66 Update time Figure 20 \u2013 Transmitter spectral mask of an IEEE 802.15.4 system <\/td>\n<\/tr>\n | ||||||
231<\/td>\n | 5.67 Wireless device density 5.68 Wireless device type information Figure 21 \u2013 Example of distribution functions of the update time <\/td>\n<\/tr>\n | ||||||
232<\/td>\n | 5.69 Wireless communication solution density 5.70 Wireless technology or standard 6 Coexistence management information structures 6.1 General <\/td>\n<\/tr>\n | ||||||
233<\/td>\n | Table 4 \u2013 Hierarchy of the characteristics <\/td>\n<\/tr>\n | ||||||
234<\/td>\n | 6.2 General plant characteristic 6.2.1 General 6.2.2 General plant characteristic Figure 22 \u2013 Principle for use of coexistence parameters Figure 23 \u2013 Parameters to describe the general plant characteristic <\/td>\n<\/tr>\n | ||||||
235<\/td>\n | 6.2.3 Passive environmental influences 6.2.4 Active environmental influences Table 5 \u2013 List of parameters used to describe the general plant characteristic Table 6 \u2013 List of parameters used to describe the passive environmental influences Table 7 \u2013 List of parameters used to describe the active environmental influences <\/td>\n<\/tr>\n | ||||||
236<\/td>\n | 6.3 Application communication requirements 6.3.1 Overview Table 8 \u2013 List of parameters used to describe the interference type <\/td>\n<\/tr>\n | ||||||
237<\/td>\n | 6.3.2 Requirements influencing the characteristic of wireless solutions Figure 24 \u2013 Parameters to describe application communication requirements Table 9 \u2013 List of parameters used to describe the requirementsinfluencing the characteristic of wireless solutions <\/td>\n<\/tr>\n | ||||||
238<\/td>\n | 6.3.3 Performance requirements 6.4 Wireless system type and wireless device type 6.4.1 Overview Figure 25 \u2013 Parameters to describe wireless system type and device type Table 10 \u2013 List of characteristic parameters <\/td>\n<\/tr>\n | ||||||
239<\/td>\n | 6.4.2 Wireless system type 6.4.3 Wireless device type Table 11 \u2013 List of parameters used to describe the wireless system type <\/td>\n<\/tr>\n | ||||||
240<\/td>\n | Figure 26 \u2013 Example of power spectral density and transmitterspectral mask <\/td>\n<\/tr>\n | ||||||
241<\/td>\n | Figure 27 \u2013 Example of medium utilization in time and frequency Table 12 \u2013 List of parameters used to describe the transmitter of a wireless device type <\/td>\n<\/tr>\n | ||||||
242<\/td>\n | 6.5 Wireless solution 6.5.1 Overview 6.5.2 Wireless system solution Figure 28 \u2013 Parameters to describe a wireless communication solution Table 13 \u2013 List of parameters used to describe the receiver of a wireless device type <\/td>\n<\/tr>\n | ||||||
243<\/td>\n | 6.5.3 Wireless device solution Table 14 \u2013 List of parameters used to describe a wireless solution Table 15 \u2013 List of general parameters used to describe the wireless device solution <\/td>\n<\/tr>\n | ||||||
244<\/td>\n | 6.6 Application related characteristic parameters Table 16 \u2013 List of parameters used to describe the transmitterof a wireless device solution Table 17 \u2013 List of parameters used to describe the receiver of a wireless device solution <\/td>\n<\/tr>\n | ||||||
245<\/td>\n | Table 18 \u2013 List of relevant characteristic parameters of wireless solutions Table 19 \u2013 List of relevant statistical values of characteristic parameters <\/td>\n<\/tr>\n | ||||||
246<\/td>\n | 7 Coexistence management process 7.1 General 7.1.1 Overview 7.1.2 Documentation <\/td>\n<\/tr>\n | ||||||
248<\/td>\n | 7.1.3 Suitable documentation method 7.1.4 Application of tools 7.2 Establishment of a coexistence management system 7.2.1 Nomination of a coexistence manager <\/td>\n<\/tr>\n | ||||||
249<\/td>\n | 7.2.2 Responsibility of a coexistence manager 7.2.3 Support by wireless experts <\/td>\n<\/tr>\n | ||||||
250<\/td>\n | 7.2.4 Training 7.3 Maintaining coexistence management system 7.4 Phases of a coexistence management process 7.4.1 Investigation phase <\/td>\n<\/tr>\n | ||||||
253<\/td>\n | 7.4.2 Planning phase <\/td>\n<\/tr>\n | ||||||
254<\/td>\n | Figure 29 \u2013 Planning of a wireless system inthe coexistence management process <\/td>\n<\/tr>\n | ||||||
255<\/td>\n | 7.4.3 Implementation phase <\/td>\n<\/tr>\n | ||||||
256<\/td>\n | 7.4.4 Operation phase <\/td>\n<\/tr>\n | ||||||
257<\/td>\n | Figure 30 \u2013 Implementation and operation of a wireless systemin the coexistence management process <\/td>\n<\/tr>\n | ||||||
258<\/td>\n | 8 Coexistence parameter templates <\/td>\n<\/tr>\n | ||||||
259<\/td>\n | Table 20 \u2013 Template used to describe the general plant characteristic <\/td>\n<\/tr>\n | ||||||
260<\/td>\n | Table 21 \u2013 Template used to describe the application communication requirements <\/td>\n<\/tr>\n | ||||||
261<\/td>\n | Table 22 \u2013 Template used to describe the wireless system type Table 23 \u2013 Template used to describe a wireless device type <\/td>\n<\/tr>\n | ||||||
262<\/td>\n | Table 24 \u2013 Template used to describe the wireless system solution <\/td>\n<\/tr>\n | ||||||
263<\/td>\n | Table 25 \u2013 Template used to describe a wireless device solution Table 26 \u2013 Template used to describe the relevant characteristicparameters of wireless solutions <\/td>\n<\/tr>\n | ||||||
264<\/td>\n | Table 27 \u2013 Template used to describe the relevant statisticalvalues of characteristic parameters Table 28 \u2013 Template used to describe an interference type <\/td>\n<\/tr>\n | ||||||
265<\/td>\n | Bibliography <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":" Tracked Changes. Industrial networks. Coexistence of wireless systems – Coexistence management<\/b><\/p>\n |