{"id":29916,"date":"2024-10-17T03:23:51","date_gmt":"2024-10-17T03:23:51","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/asme-ptc-pm-10\/"},"modified":"2024-10-24T14:15:53","modified_gmt":"2024-10-24T14:15:53","slug":"asme-ptc-pm-10","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/asme\/asme-ptc-pm-10\/","title":{"rendered":"ASME PTC PM 10"},"content":{"rendered":"
PDF Pages<\/th>\n | PDF Title<\/th>\n<\/tr>\n | ||||||
---|---|---|---|---|---|---|---|
9<\/td>\n | FOREWORD <\/td>\n<\/tr>\n | ||||||
10<\/td>\n | COMMITTEE ROSTER <\/td>\n<\/tr>\n | ||||||
12<\/td>\n | CORRESPONDENCE WITH THE PTC PM COMMITTEE <\/td>\n<\/tr>\n | ||||||
13<\/td>\n | INTRODUCTION <\/td>\n<\/tr>\n | ||||||
15<\/td>\n | Section 1 Fundamental Concepts 1- 1 OBJECT AND SCOPE 1- 2 OVERVIEW <\/td>\n<\/tr>\n | ||||||
19<\/td>\n | FIGURES Fig. 1-2.6-1 Typical Plant Losses <\/td>\n<\/tr>\n | ||||||
20<\/td>\n | Fig. 1-2.6-2 Typical Losses for a Gas-Turbine\u2013Based Combined Cycle Plant <\/td>\n<\/tr>\n | ||||||
21<\/td>\n | Fig. 1-2-6-3 Heat Balance for Turbine Cycle… <\/td>\n<\/tr>\n | ||||||
22<\/td>\n | Fig. 1-2.6-4 Mass Flows Through Steam and Feedwater System for TypicalPressurized Water Reactor Plant Fig. 1-2.6-5 Energy Distribution for a Typical Pressurized Water Reactor Nuclear Plant Fig. 1-2.6-5 Energy Distribution for a Typical Pressurized Water Reactor Nuclear Plant <\/td>\n<\/tr>\n | ||||||
23<\/td>\n | Fig. 1-2.6-6 Typical Boiler Losses <\/td>\n<\/tr>\n | ||||||
24<\/td>\n | Fig. 1-2.6-7 Typical Cycle Losses <\/td>\n<\/tr>\n | ||||||
25<\/td>\n | Fig. 1-2.6-8 Typical Turbine\/Generator Losses TABLES Table 1-2.6-1 Off-Design Conditions’ Approximate Effect on Actual Heat Rate <\/td>\n<\/tr>\n | ||||||
26<\/td>\n | Fig. 1-2.6-9 Computed Variation of Unburned Carbon With Excess Air Table 1-2.6-2 Value of Turbine Section Efficiency Level Improvementon a Unit Heat Rate of 10,000 Btu\/kWh <\/td>\n<\/tr>\n | ||||||
27<\/td>\n | Fig. 1-2.6-10 Effect of O2 and Coal Fineness on Unit Heat Rate Fig. 1-2.6-11 Effect of Stack Gas Temperature on Unit Heat Rate <\/td>\n<\/tr>\n | ||||||
28<\/td>\n | Fig. 1-2.6-12 Boiler Loss Optimization Table 1-2.6-3 Sensitivity of Heat Rate to Various Parameters for a Typical Pressurized WaterReactor Nuclear Power Plant <\/td>\n<\/tr>\n | ||||||
31<\/td>\n | 1- 3 DEFINITIONS AND DESCRIPTION OF TERMS <\/td>\n<\/tr>\n | ||||||
36<\/td>\n | Section 2 Program Implementation 2- 1 PROGRAM PLANNING <\/td>\n<\/tr>\n | ||||||
47<\/td>\n | 2- 2 INSTRUMENTATION <\/td>\n<\/tr>\n | ||||||
51<\/td>\n | Fig. 2-2.3.1-1 Primary Flow Section for Welded Assembly Fig. 2-2.3.1-2 Inspection Port <\/td>\n<\/tr>\n | ||||||
54<\/td>\n | Fig. 2-2.4-1 Basic Pressure Terms From ASME PTC 19.2 Fig. 2-2.4-2 General Uncertainties of Pressure-MeasuringDevices From PTC 6 Report <\/td>\n<\/tr>\n | ||||||
56<\/td>\n | Fig. 2-2.4.5-1 Effect of Pressure and Bias Errors on HP Turbine Efficiency <\/td>\n<\/tr>\n | ||||||
57<\/td>\n | Fig. 2-2.4.5-2 Effect of Pressure and Bias Errors on IP Turbine Efficiency <\/td>\n<\/tr>\n | ||||||
58<\/td>\n | Fig. 2-2.5.1-1 TC Drift Study of Six Thermocouples Cycled 210 days to 300 days <\/td>\n<\/tr>\n | ||||||
59<\/td>\n | Fig. 2-2.5.2-1 Drift of Ice Point Resistance of 102 RTDs Cycled 810 days <\/td>\n<\/tr>\n | ||||||
60<\/td>\n | Fig. 2-2.5.3-1 Effect of Temperature Bias and Error on HP Turbine Efficiency Fig. 2-2.5.3-2 Effect of Temperature Bias and Error on IP Turbine Efficiency <\/td>\n<\/tr>\n | ||||||
72<\/td>\n | 2- 3 PERFORMANCE MONITORING IMPLEMENTATION AND DIAGNOSTICS <\/td>\n<\/tr>\n | ||||||
76<\/td>\n | Table 2-3.6.2.2-1 Diagnostic Chart of Turbine Loss Characteristics <\/td>\n<\/tr>\n | ||||||
77<\/td>\n | Fig. 2-3.6.2.1-1 Performance Curves to Characterize BoilerLosses \u2014 Example for a Coal-Fired Unit Table 2-3.6.2.2-2 Steam Surface Condenser Diagnostics <\/td>\n<\/tr>\n | ||||||
78<\/td>\n | Fig. 2-3.6.2.3-1 Heat Rate Logic Tree \u2014 Main Diagram <\/td>\n<\/tr>\n | ||||||
79<\/td>\n | Fig. 2-3.6.2.3-2 Illustration of Decision Tree Concept for Investigating PerformanceParameter Deviations <\/td>\n<\/tr>\n | ||||||
95<\/td>\n | Fig. 2-3.8.4.1-1 Pulverizer Capacity Curve <\/td>\n<\/tr>\n | ||||||
96<\/td>\n | Fig. 2-3.8.4.1-2 Arrangement for Sampling Pulverized Coal <\/td>\n<\/tr>\n | ||||||
97<\/td>\n | Fig. 2-3.8.4.1-3 Graphical Form for Representing Distribution of Sizes of Broken Coal <\/td>\n<\/tr>\n | ||||||
103<\/td>\n | Fig. 2-3.8.6.1-1 Sampling Direct-Fired Pulverized Coal-Sampling Stations <\/td>\n<\/tr>\n | ||||||
119<\/td>\n | Fig. 2-3.9.4.3-1 Typical DCA and TTD Versus Internal Liquid Level <\/td>\n<\/tr>\n | ||||||
138<\/td>\n | Table 2-3.16-1 Matrix of Cycle Interrelations <\/td>\n<\/tr>\n | ||||||
145<\/td>\n | 2-4 INCREMENTAL HEAT RATE Fig. 2-4.2-1 Input\/Output Curves for the Two Typical Thermal Units <\/td>\n<\/tr>\n | ||||||
146<\/td>\n | Fig. 2-4.2-2 Input\/Output Relationships for a2 \u00c3\u2014 1 Combined Cycle Facility Fig. 2-4.2-3 Incremental Heat Rate for Steam Turbine WithSequential Valve Operation <\/td>\n<\/tr>\n | ||||||
147<\/td>\n | Table 2-4.3-1 Incremental Rates for the Two Generating Units in Fig. 2-4.2-1 <\/td>\n<\/tr>\n | ||||||
148<\/td>\n | Table 2-4.3-2 Relative Incremental Costs Associated With a Combined Cycle Facility <\/td>\n<\/tr>\n | ||||||
149<\/td>\n | Fig. 2-4.3.1-1 Optimum Load Division by Equal Incremental Heat Rate Table 2-4.3.1-1 Impact of Load Division on Plant Economy <\/td>\n<\/tr>\n | ||||||
151<\/td>\n | Fig. 2-4.4-1 Example of Heat Rate Not Monotonically Increasing in a 2 \u00c3\u2014 1 Configuration <\/td>\n<\/tr>\n | ||||||
152<\/td>\n | Fig. 2-4.4-2 Incremental Curve Shape <\/td>\n<\/tr>\n | ||||||
153<\/td>\n | Fig. 2-4.4-3 Illustration of Development of Incremental Heat Rate InformationFrom Basic Plant Measurements <\/td>\n<\/tr>\n | ||||||
155<\/td>\n | Fig. 2-4.4-4 Heat Rate and Incremental Heat Rate Versus LoadFossil Unit Fig. 2-4.4-5 Heat Rate and Incremental Heat Rate Versus LoadBias Error <\/td>\n<\/tr>\n | ||||||
156<\/td>\n | Fig. 2-4.4-6 Heat Rate and Incremental Heat Rate Versus LoadCombined Bias and Random Error <\/td>\n<\/tr>\n | ||||||
158<\/td>\n | Fig. 2-4.6.1-1 Combined Cycle Heat Rates Versus Ambient Temperature Fig. 2-4.6.2-1 Combined Cycle Input\/Output Relationships <\/td>\n<\/tr>\n | ||||||
159<\/td>\n | 2-5 PERFORMANCE OPTIMIZATION Fig. 2-4.6.2-2 Combined Cycle Incremental Heat RatesVersus Ambient Temperature <\/td>\n<\/tr>\n | ||||||
191<\/td>\n | Section 3 Case Studies\/ Diagnostic Examples 3- 1 AIR HEATER PLUGGING DUE TO FAILED SOOTBLOWER Fig. 3-1.1-1 Air Heater Exit Gas Temperature 2-Week Trend <\/td>\n<\/tr>\n | ||||||
192<\/td>\n | Fig. 3-1.3-1 Air Heater Differential Pressure 2-Week Trends <\/td>\n<\/tr>\n | ||||||
193<\/td>\n | 3-2 BOILER EXAMPLE <\/td>\n<\/tr>\n | ||||||
194<\/td>\n | 3-3 TEMPERATURE CALIBRATIONS <\/td>\n<\/tr>\n | ||||||
195<\/td>\n | Fig. 3-3.2-1 Three RTDs: Readings Collected at Five Temperatures <\/td>\n<\/tr>\n | ||||||
196<\/td>\n | Fig. 3-3.2-2 Fit of RTD Data Fig. 3-3.2-3 Histogram of RTD A Fig. 3-3.2-4 Distribution of Errors for the Three RTDs <\/td>\n<\/tr>\n | ||||||
197<\/td>\n | Fig. 3-3.2-5 Fits of RTDs A, B, and C in Open Circuit Fig. 3-3.2-6 Fits of RTDs A, B, and C Using the Calendar\u2013Van DusenEq. (3-3.2) for Calibration <\/td>\n<\/tr>\n | ||||||
198<\/td>\n | 3-4 CAPACITY LOSS INVESTIGATION DUE TO FOULING OF FEED WATERFLOW NOZZLE (NUCLEAR PLANT) Fig. 3-3.3-1 Fits With and Without Replicate Data <\/td>\n<\/tr>\n | ||||||
200<\/td>\n | Fig. 3-4.1.1-1 Logic for Tree Case Study <\/td>\n<\/tr>\n | ||||||
201<\/td>\n | Fig. 3-4.1.2-1 Decision Tree for Capacity Loss… <\/td>\n<\/tr>\n | ||||||
202<\/td>\n | Fig. 3-4.1.3-1 Power design Heat Balance… <\/td>\n<\/tr>\n | ||||||
203<\/td>\n | 3-5 UNIT CAPACITY AND ID FAN CAPACITY DUE TO AIR HEATER LEAKAGE Table 3-5.2-1 Air Heater Leakage <\/td>\n<\/tr>\n | ||||||
204<\/td>\n | Fig. 3-5.2-1 Flue Gas Analyzer Measurements at Locations Along the Gas Path <\/td>\n<\/tr>\n | ||||||
205<\/td>\n | 3-6 LOSS OF EXTRACTION FLOW Fig. 3-6.3-1 Generator-Output and Heat Rate Deviation <\/td>\n<\/tr>\n | ||||||
206<\/td>\n | Fig. 3-6.3-2 Change in Performance Profile Over Significant Cycle Positions <\/td>\n<\/tr>\n | ||||||
207<\/td>\n | 3-7 QUESTION AND ANSWER SESSION:A NUCLEAR PLANT DIAGNOSTIC PROBLEM Fig. 3-7-1 Variations of Fourth-Stage Pressure <\/td>\n<\/tr>\n | ||||||
208<\/td>\n | Fig. 3-7-2 Similarities Between Predicted and Measured Pressure Changes <\/td>\n<\/tr>\n | ||||||
209<\/td>\n | 3- 8 APPLICATION OF TURBINE TEST DATA FOR PROBLEM IDENTIFICATION <\/td>\n<\/tr>\n | ||||||
210<\/td>\n | 3-9 CONDENSER TUBE FOULING PROBLEM Fig. 3-8.3-1 Turbine Pressure Profiles <\/td>\n<\/tr>\n | ||||||
213<\/td>\n | 3- 10 FEEDWATER PARTITION- PLATE BYPASS PROBLEM Table 3-10.1-1 Test Results of Four High-Pressure Heaters <\/td>\n<\/tr>\n | ||||||
214<\/td>\n | 3-11 AIR-HEATER PLUGGAGE PROBLEM <\/td>\n<\/tr>\n | ||||||
215<\/td>\n | 3-12 DEPOSITS IN HIGH-PRESSURE TURBINE <\/td>\n<\/tr>\n | ||||||
216<\/td>\n | 3- 13 PULVERIZER COAL- MILL FINENESS PROBLEM Table 3-12.2-1 Reconciliation of Load Change Based on Change in Performance Parameters <\/td>\n<\/tr>\n | ||||||
217<\/td>\n | Fig. 3-13.3-1 Adjusted Inverted Cone Table 3-13.3-1 Measurements Taken at the Outage <\/td>\n<\/tr>\n | ||||||
218<\/td>\n | Table 3-13.3-2 Calculated Cone and Feedpipe Areas Table 3-13.3-3 Resulting Gap Clearances and Areas <\/td>\n<\/tr>\n | ||||||
219<\/td>\n | NONMANDATORY APPENDIX A THERMODYNAMICS FUNDAMENTALS <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":" ASME PTC PM Performance Monitoring Guidelines for Power Plants <\/b><\/p>\n |