{"id":248914,"date":"2024-10-19T16:24:10","date_gmt":"2024-10-19T16:24:10","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/asme-om-2020\/"},"modified":"2024-10-25T11:35:28","modified_gmt":"2024-10-25T11:35:28","slug":"asme-om-2020","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/asme\/asme-om-2020\/","title":{"rendered":"ASME OM 2020"},"content":{"rendered":"

Establishes the requirements for preservice and inservice testing and examination of certain components to assess their operational readiness in light-water reactor power plants. It identifies the components subject to test or examination, responsibilities, methods, intervals, parameters to be measured and evaluated, criteria for evaluating the results, corrective action, personnel qualification, and record keeping. These requirements apply to: (a) pumps and valves that are required to perform a specific function in shutting down a reactor to the safe shutdown condition, in maintaining the safe shutdown condition, or in mitigating the consequences of an accident; (b) pressure relief devices that protect systems or portions of systems that perform one or more of these three functions; and (c) dynamic restraints (snubbers) used in systems that perform one or more of these three functions.<\/p>\n

PDF Catalog<\/h4>\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
PDF Pages<\/th>\nPDF Title<\/th>\n<\/tr>\n
4<\/td>\nCONTENTS <\/td>\n<\/tr>\n
15<\/td>\nFOREWORD <\/td>\n<\/tr>\n
16<\/td>\nCOMMITTEE ROSTER <\/td>\n<\/tr>\n
19<\/td>\nCORRESPONDENCE WITH THE OM COMMITTEE <\/td>\n<\/tr>\n
21<\/td>\nPREFACE <\/td>\n<\/tr>\n
23<\/td>\nASME OM-2020 SUMMARY OF CHANGES <\/td>\n<\/tr>\n
26<\/td>\nAPPLICABILITY INDEX FOR ASME OM CASES <\/td>\n<\/tr>\n
28<\/td>\nCROSS-REFERENCING AND STYLISTIC CHANGES IN ASME OM <\/td>\n<\/tr>\n
30<\/td>\nDIVISION 1 OM CODE: SECTION IST
Subsection ISTA General Requirements
ISTA-1000 INTRODUCTION
ISTA-1100 Scope
ISTA-1200 Jurisdiction
ISTA-1300 Application
ISTA-1400 Referenced Standards and Specifications
ISTA-1500 Owner\u2019s Responsibilities <\/td>\n<\/tr>\n
31<\/td>\nISTA-1600 Accessibility
ISTA-2000 DEFINITIONS <\/td>\n<\/tr>\n
32<\/td>\nISTA-3000 GENERAL REQUIREMENTS
ISTA-3100 Test and Examination Program <\/td>\n<\/tr>\n
33<\/td>\nISTA-3200 Administrative Requirements
ISTA-3300 Corrective Actions
ISTA-4000 INSTRUMENTATION AND TEST EQUIPMENT
ISTA-4100 Range and Accuracy
ISTA-4200 Calibration
Tables
Table ISTA-3170-1 Test Frequency and Time Between Tests <\/td>\n<\/tr>\n
34<\/td>\nISTA-5000 SPECIFIC TEST REQUIREMENTS
ISTA-6000 MONITORING, ANALYSIS, AND EVALUATION
ISTA-7000 TO BE PROVIDED AT A LATER DATE
ISTA-8000 TO BE PROVIDED AT A LATER DATE
ISTA-9000 RECORDS AND REPORTS
ISTA-9100 Scope
ISTA-9200 Requirements
ISTA-9300 Retention <\/td>\n<\/tr>\n
35<\/td>\nSubsection ISTB Inservice Testing of Pumps in Water-Cooled Reactor Nuclear Power Plants \u2014 Pre-2000 Plants
ISTB-1000 INTRODUCTION
ISTB-1100 Applicability
ISTB-1200 Exclusions
ISTB-1300 Pump Categories
ISTB-1400 Owner\u2019s Responsibility
ISTB-2000 SUPPLEMENTAL DEFINITIONS
ISTB-3000 GENERAL TESTING REQUIREMENTS
ISTB-3100 Preservice Testing <\/td>\n<\/tr>\n
36<\/td>\nISTB-3200 Inservice Testing
ISTB-3300 Reference Values
Table ISTB-3000-1 Inservice Test Parameters <\/td>\n<\/tr>\n
37<\/td>\nISTB-3400 Frequency of Inservice Tests
Table ISTB-3400-1 Inservice Test Frequency <\/td>\n<\/tr>\n
38<\/td>\nISTB-3500 Data Collection
ISTB-4000 TO BE PROVIDED AT A LATER DATE
ISTB-5000 SPECIFIC TESTING REQUIREMENTS
Table ISTB-3510-1 Required Instrument Accuracy <\/td>\n<\/tr>\n
39<\/td>\nISTB-5100 Centrifugal Pumps (Except Vertical Line Shaft Centrifugal Pumps) <\/td>\n<\/tr>\n
40<\/td>\nISTB-5200 Vertical Line Shaft Centrifugal Pumps
Table ISTB-5121-1 Centrifugal Pump Test Acceptance Criteria <\/td>\n<\/tr>\n
42<\/td>\nISTB-5300 Positive Displacement Pumps
Table ISTB-5221-1 Vertical Line Shaft Centrifugal Pump Test Acceptance Criteria <\/td>\n<\/tr>\n
43<\/td>\nFigures
Figure ISTB-5223-1 Vibration Limits <\/td>\n<\/tr>\n
44<\/td>\nTable ISTB-5321-1 Positive Displacement Pump (Except Reciprocating) Test Acceptance Criteria
Table ISTB-5321-2 Reciprocating Positive Displacement Pump Test Acceptance Criteria <\/td>\n<\/tr>\n
45<\/td>\nISTB-6000 MONITORING, ANALYSIS, AND EVALUATION
ISTB-6100 Trending
ISTB-6200 Corrective Action
ISTB-6300 Systematic Error
ISTB-6400 Analysis of Related Conditions
ISTB-7000 TO BE PROVIDED AT A LATER DATE
ISTB-8000 TO BE PROVIDED AT A LATER DATE
ISTB-9000 RECORDS AND REPORTS
ISTB-9100 Pump Records
ISTB-9200 Test Plans <\/td>\n<\/tr>\n
46<\/td>\nISTB-9300 Record of Tests
ISTB-9400 Record of Corrective Action <\/td>\n<\/tr>\n
47<\/td>\nSubsection ISTC Inservice Testing of Valves in Water-Cooled Reactor Nuclear Power Plants
ISTC-1000 INTRODUCTION
ISTC-1100 Applicability
ISTC-1200 Exclusions
ISTC-1300 Valve Categories
ISTC-1400 Owner\u2019s Responsibility
ISTC-2000 SUPPLEMENTAL DEFINITIONS <\/td>\n<\/tr>\n
48<\/td>\nISTC-3000 GENERAL TESTING REQUIREMENTS
ISTC-3100 Preservice Testing
ISTC-3200 Inservice Testing
ISTC-3300 Reference Values
ISTC-3400 To Be Provided at a Later Date <\/td>\n<\/tr>\n
49<\/td>\nISTC-3500 Valve Testing Requirements
Table ISTC-3500-1 Inservice Test Requirements <\/td>\n<\/tr>\n
50<\/td>\nISTC-3600 Leak Testing Requirements <\/td>\n<\/tr>\n
51<\/td>\nISTC-3700 Position Verification Testing
ISTC-4000 INSTRUMENTATION AND TEST EQUIPMENT <\/td>\n<\/tr>\n
52<\/td>\nISTC-5000 SPECIFIC TESTING REQUIREMENTS
ISTC-5100 Power-Operated Valves (POVs) <\/td>\n<\/tr>\n
53<\/td>\nISTC-5200 Other Valves <\/td>\n<\/tr>\n
56<\/td>\nISTC-6000 MONITORING, ANALYSIS, AND EVALUATION
ISTC-7000 TO BE PROVIDED AT A LATER DATE
ISTC-8000 TO BE PROVIDED AT A LATER DATE
ISTC-9000 RECORDS AND REPORTS
ISTC-9100 Records
ISTC-9200 Test Plans <\/td>\n<\/tr>\n
57<\/td>\nSubsection ISTD Preservice and Inservice Requirements for Dynamic Restraints (Snubbers) in Water-Cooled Reactor Nuclear Power Plants
ISTD-1000 INTRODUCTION
ISTD-1100 Applicability
ISTD-1400 Owner\u2019s Responsibility
ISTD-1500 Snubber Maintenance or Repair
ISTD-1600 Snubber Modification and Replacement
ISTD-1700 Deletions of Unacceptable Snubbers <\/td>\n<\/tr>\n
58<\/td>\nISTD-1800 Evaluation of Affected Systems, Structures, and Components
ISTD-2000 DEFINITIONS <\/td>\n<\/tr>\n
59<\/td>\nISTD-3000 GENERAL REQUIREMENTS
ISTD-3100 General Examination Requirements
ISTD-3200 General Testing Requirements
ISTD-3300 General Service-Life Monitoring Requirements
ISTD-4000 SPECIFIC EXAMINATION REQUIREMENTS
ISTD-4100 Preservice Examination <\/td>\n<\/tr>\n
60<\/td>\nISTD-4200 Inservice Examination <\/td>\n<\/tr>\n
61<\/td>\nISTD-5000 SPECIFIC TESTING REQUIREMENTS
ISTD-5100 Preservice Operational Readiness Testing
ISTD-5200 Inservice Operational Readiness Testing <\/td>\n<\/tr>\n
62<\/td>\nTable ISTD-4252-1 Visual Examination Table <\/td>\n<\/tr>\n
63<\/td>\nISTD-5300 The 10% Testing Sample <\/td>\n<\/tr>\n
64<\/td>\nISTD-5400 The 37 Testing Sample Plan <\/td>\n<\/tr>\n
65<\/td>\nISTD-5500 Retests of Previously Unacceptable Snubbers
Figure ISTD-5431-1 The 37 Testing Sample Plan <\/td>\n<\/tr>\n
66<\/td>\nISTD-6000 SERVICE LIFE MONITORING REQUIREMENTS
ISTD-6100 Initial Service Life
ISTD-6200 Service Life Reevaluation
ISTD-6300 Cause Determination
ISTD-6400 Additional Monitoring Requirements for Snubbers That Are Tested Without Applying a Load to the Snubber Piston Rod
ISTD-6500 Testing for Service Life Monitoring Purposes
ISTD-7000 TO BE PROVIDED AT A LATER DATE
ISTD-8000 TO BE PROVIDED AT A LATER DATE
ISTD-9000 RECORDS AND REPORTS
ISTD-9100 Snubber Records
ISTD-9200 Test Plans
ISTD-9300 Record of Tests <\/td>\n<\/tr>\n
67<\/td>\nISTD-9400 Record of Corrective Action
ISTD-9500 Service Life Records <\/td>\n<\/tr>\n
68<\/td>\nSubsection ISTE Risk-Informed Inservice Testing of Components in Water-Cooled Reactor Nuclear Power Plants
ISTE-1000 INTRODUCTION
ISTE-1100 Applicability
ISTE-1200 Alternative
ISTE-1300 General
ISTE-2000 SUPPLEMENTAL DEFINITIONS <\/td>\n<\/tr>\n
69<\/td>\nISTE-3000 GENERAL REQUIREMENTS
ISTE-3100 Implementation
ISTE-3200 Probabilistic Risk Assessment
ISTE-3300 Integrated Decision Making <\/td>\n<\/tr>\n
70<\/td>\nISTE-3400 Evaluation of Aggregate Risk
ISTE-3500 Feedback and Corrective Actions
ISTE-4000 SPECIFIC COMPONENT CATEGORIZATION REQUIREMENTS
ISTE-4100 Component Risk Categorization <\/td>\n<\/tr>\n
71<\/td>\nISTE-4200 Component Safety Categorization <\/td>\n<\/tr>\n
72<\/td>\nISTE-4300 Testing Strategy Formulation
ISTE-4400 Evaluation of Aggregate Risk <\/td>\n<\/tr>\n
73<\/td>\nISTE-4500 Inservice Testing Program
ISTE-5000 SPECIFIC TESTING REQUIREMENTS
ISTE-5100 Pumps <\/td>\n<\/tr>\n
74<\/td>\nISTE-5200 Check Valves
ISTE-5300 Motor-Operated Valve Assemblies
ISTE-5400 Pneumatically Operated Valves
ISTE-5500 To Be Provided at a Later Date
Table ISTE-5121-1 LSSC Pump Testing <\/td>\n<\/tr>\n
75<\/td>\nISTE-6000 MONITORING, ANALYSIS, AND EVALUATION
ISTE-6100 Performance Monitoring
ISTE-6200 Feedback and Corrective Actions
ISTE-7000 TO BE PROVIDED AT A LATER DATE
ISTE-8000 TO BE PROVIDED AT A LATER DATE
ISTE-9000 RECORDS AND REPORTS
ISTE-9100 Plant Expert Panel Records
ISTE-9200 Component Records <\/td>\n<\/tr>\n
76<\/td>\nSubsection ISTF Inservice Testing of Pumps in Water-Cooled Reactor Nuclear Power Plants \u2014 Post-2000 Plants
ISTF-1000 INTRODUCTION
ISTF-1100 Applicability
ISTF-1200 Exclusions
ISTF-1300 Owner\u2019s Responsibility
ISTF-2000 SUPPLEMENTAL DEFINITIONS
ISTF-3000 GENERAL TESTING REQUIREMENTS
ISTF-3100 Preservice Testing <\/td>\n<\/tr>\n
77<\/td>\nISTF-3200 Inservice Testing
ISTF-3300 Reference Values
Table ISTF-3000-1 Inservice Test Parameters <\/td>\n<\/tr>\n
78<\/td>\nISTF-3400 Frequency of Inservice Tests
ISTF-3500 Data Collection
Table ISTF-3510-1 Required Instrument Accuracy <\/td>\n<\/tr>\n
79<\/td>\nISTF-4000 TO BE PROVIDED AT A LATER DATE
ISTF-5000 SPECIFIC TESTING REQUIREMENTS
ISTF-5100 Centrifugal Pumps (Except Vertical Line Shaft Centrifugal Pumps) <\/td>\n<\/tr>\n
80<\/td>\nISTF-5200 Vertical Line Shaft Centrifugal Pumps
ISTF-5300 Positive Displacement Pumps
Table ISTF-5120-1 Centrifugal Pump Test Acceptance Criteria <\/td>\n<\/tr>\n
81<\/td>\nISTF-6000 MONITORING, ANALYSIS, AND EVALUATION
ISTF-6100 Trending
ISTF-6200 Corrective Action
ISTF-6300 Systematic Error <\/td>\n<\/tr>\n
82<\/td>\nISTF-6400 Analysis of Related Conditions
ISTF-7000 TO BE PROVIDED AT A LATER DATE
ISTF-8000 TO BE PROVIDED AT A LATER DATE
ISTF-9000 RECORDS AND REPORTS
ISTF-9100 Pump Records
Table ISTF-5320-1 Positive Displacement Pump (Except Reciprocating) Test Acceptance Criteria
Table ISTF-5320-2 Reciprocating Positive Displacement Pump Test Acceptance Criteria <\/td>\n<\/tr>\n
83<\/td>\nISTF-9200 Test Plans
ISTF-9300 Record of Tests
ISTF-9400 Record of Corrective Action <\/td>\n<\/tr>\n
84<\/td>\nMandatory Appendices
Division 1, Mandatory Appendix I Inservice Testing of Pressure Relief Devices in Water-Cooled Reactor Nuclear Power Plants
I-1000 GENERAL REQUIREMENTS <\/td>\n<\/tr>\n
86<\/td>\nI-2000 INTRODUCTION
I-3000 PRESSURE RELIEF DEVICE TESTING <\/td>\n<\/tr>\n
90<\/td>\nI-4000 TEST METHODS <\/td>\n<\/tr>\n
93<\/td>\nI-5000 RECORDS AND RECORD KEEPING
Table I-4220-1 Seat Tightness Testing Methods for Pressure Relief Devices <\/td>\n<\/tr>\n
94<\/td>\nDivision 1, Mandatory Appendix II Check Valve Condition Monitoring Program
II-1000 PURPOSE
II-2000 GROUPINGS
II-3000 ANALYSIS
II-4000 CONDITION-MONITORING ACTIVITIES <\/td>\n<\/tr>\n
95<\/td>\nII-5000 CORRECTIVE MAINTENANCE
II-6000 DOCUMENTATION
Table II-4000-1 Maximum Intervals for Use When Applying Internal Extensions <\/td>\n<\/tr>\n
96<\/td>\nDivision 1, Mandatory Appendix III Preservice and Inservice Testing of Active ElectricMotor-Operated Valve Assemblies in Water-Cooled Reactor Nuclear Power Plants
III-1000 INTRODUCTION
III-2000 SUPPLEMENTAL DEFINITIONS
III-3000 GENERAL TESTING REQUIREMENTS <\/td>\n<\/tr>\n
98<\/td>\nIII-4000 TO BE PROVIDED AT A LATER DATE
III-5000 TEST METHODS
III-6000 ANALYSIS AND EVALUATION OF DATA <\/td>\n<\/tr>\n
100<\/td>\nIII-7000 TO BE PROVIDED AT A LATER DATE
III-8000 TO BE PROVIDED AT A LATER DATE
III-9000 RECORDS AND REPORTS <\/td>\n<\/tr>\n
101<\/td>\nDivision 1, Mandatory Appendix IV Preservice and Inservice Testing of Active Pneumatically Operated Valve Assemblies in Nuclear Reactor Power Plants
IV-1000 INTRODUCTION
IV-2000 SUPPLEMENTAL DEFINITIONS <\/td>\n<\/tr>\n
102<\/td>\nIV-3000 GENERAL TESTING REQUIREMENTS <\/td>\n<\/tr>\n
104<\/td>\nIV-4000 RESERVED
IV-5000 PERFORMANCE ASSESSMENT TEST METHODS <\/td>\n<\/tr>\n
105<\/td>\nIV-6000 PERFORMANCE ASSESSMENT TEST ANALYSIS AND EVALUATION <\/td>\n<\/tr>\n
106<\/td>\nIV-7000 STROKE TEST AND FAIL SAFE DATA ANALYSIS AND EVALUATION
IV-8000 RESERVED
IV-9000 RECORDS AND REPORTS <\/td>\n<\/tr>\n
107<\/td>\nDivision 1, Mandatory Appendix V Pump Periodic Verification Test Program <\/td>\n<\/tr>\n
108<\/td>\nNonmandatory Appendices
Division 1, Nonmandatory Appendix A Preparation of Test Plans
A-1000 PURPOSE
A-2000 TEST PLAN CONTENTS <\/td>\n<\/tr>\n
109<\/td>\nA-3000 SUBSTITUTE TESTS AND EXAMINATIONS
A-3100 General
A-3200 Justification of Substitute Tests and Examinations <\/td>\n<\/tr>\n
110<\/td>\nDivision 1, Supplement to Nonmandatory Appendix A \u200a
AS-1000 SUPPLEMENT 1: INFORMATION FOR ISTB PUMP TEST TABLES
AS-2000 SUPPLEMENT 2: INFORMATION FOR ISTC VALVE TEST TABLES
AS-3000 SUPPLEMENT 3: INFORMATION FOR ISTD DYNAMIC RESTRAINT (SNUBBER) TABLES <\/td>\n<\/tr>\n
111<\/td>\nDivision 1, Nonmandatory Appendix B Dynamic Restraint Examination Checklist Items
B-1000 PURPOSE
B-2000 EXAMPLES FOR PRESERVICE AND INSERVICE
B-3000 EXAMPLES FOR PRESERVICE ONLY <\/td>\n<\/tr>\n
112<\/td>\nDivision 1, Nonmandatory Appendix C Dynamic Restraint Design and Operating Information
C-1000 PURPOSE
C-2000 DESIGN AND OPERATING ITEMS <\/td>\n<\/tr>\n
113<\/td>\nDivision 1, Nonmandatory Appendix D Comparison of Sampling Plans for Inservice Testing of Dynamic Restraints
D-1000 PURPOSE
D-2000 DESCRIPTION OF THE SAMPLING PLANS
D-3000 COMPARISON OF SAMPLING PLANS <\/td>\n<\/tr>\n
114<\/td>\nDivision 1, Nonmandatory Appendix E Flowcharts for 10% and 37 Snubber Testing Plans
E-1000 PURPOSE <\/td>\n<\/tr>\n
115<\/td>\nFigure E-1000-1 Flowchart for 10% Snubber Testing Plan (ISTD-5300) <\/td>\n<\/tr>\n
116<\/td>\nFigure E-1000-2 Flowchart for 37 Snubber Testing Plan (ISTD-5400) <\/td>\n<\/tr>\n
117<\/td>\nDivision 1, Nonmandatory Appendix F Dynamic Restraints (Snubbers) Service Life Monitoring Methods
F-1000 PURPOSE
F-2000 PREDICTED SERVICE LIFE
F-3000 SERVICE LIFE REEVALUATION <\/td>\n<\/tr>\n
118<\/td>\nF-4000 SHORTENED SERVICE LIFE
F-5000 SERVICE LIFE EXTENSION
F-6000 SEPARATE SERVICE LIFE POPULATIONS <\/td>\n<\/tr>\n
119<\/td>\nDivision 1, Nonmandatory Appendix G Application of Table ISTD-4252-1, Snubber Visual Examination
G-1000 PURPOSE
G-2000 ASSUMPTIONS
G-3000 CASE 1: EXAMINE ACCESSIBLE AND INACCESSIBLE SNUBBERS JOINTLY <\/td>\n<\/tr>\n
120<\/td>\nG-4000 CASE 2: EXAMINE ACCESSIBLE AND INACCESSIBLE SNUBBERS SEPARATELY <\/td>\n<\/tr>\n
121<\/td>\nDivision 1, Nonmandatory Appendix H Test Parameters and Methods
H-1000 PURPOSE
H-2000 TEST VARIABLES
H-3000 TEST PARAMETER MEASUREMENT
H-4000 GENERAL TESTING CONSIDERATIONS <\/td>\n<\/tr>\n
123<\/td>\nDivision 1, Nonmandatory Appendix J Check Valve Testing Following Valve Reassembly
J-1000 PURPOSE
J-2000 POSTDISASSEMBLY TEST RECOMMENDATIONS
J-3000 TEST MATRIX <\/td>\n<\/tr>\n
124<\/td>\nTable J-2000-1 Check Valve Test Matrix <\/td>\n<\/tr>\n
125<\/td>\nDivision 1, Nonmandatory Appendix K Sample List of Component Deterministic Considerations
K-1000 PURPOSE
K-2000 SAMPLE DETERMINISTIC CONSIDERATIONS <\/td>\n<\/tr>\n
126<\/td>\nDivision 1, Nonmandatory Appendix L Acceptance Guidelines
L-1000 PURPOSE
L-2000 ACCEPTANCE GUIDELINES <\/td>\n<\/tr>\n
127<\/td>\nFigure L-2100-1 Acceptance Guidelines for CDF (Adapted From RG 1.174) <\/td>\n<\/tr>\n
128<\/td>\nFigure L-2100-2 Acceptance Guidelines for LERF (Adapted From RG 1.174) <\/td>\n<\/tr>\n
129<\/td>\nDivision 1, Nonmandatory Appendix M Design Guidance for Nuclear Power Plant Systems and Component Testing
M-1000 PURPOSE
M-2000 BACKGROUND
M-3000 GUIDANCE <\/td>\n<\/tr>\n
134<\/td>\nM-4000 REFERENCES <\/td>\n<\/tr>\n
135<\/td>\nDIVISION 2 OM STANDARDS
Part 2 Performance Testing of Closed Cooling Water Systems in Light-Water Reactor Power Plants <\/td>\n<\/tr>\n
136<\/td>\nPart 3 Vibration Testing of Piping Systems
1 SCOPE
2 DEFINITIONS <\/td>\n<\/tr>\n
137<\/td>\n3 GENERAL REQUIREMENTS
Figure 1 Typical Components of a Vibration Monitoring System (VMS) <\/td>\n<\/tr>\n
138<\/td>\n3.1 Classification
Table 1 System Tolerances <\/td>\n<\/tr>\n
139<\/td>\n3.2 Monitoring Requirements and Acceptance Criteria <\/td>\n<\/tr>\n
141<\/td>\n4 VISUAL INSPECTION METHOD
4.1 Objective
4.2 Evaluation Techniques
4.3 Precautions
5 SIMPLIFIED METHOD FOR QUALIFYING PIPING SYSTEMS
5.1 Steady-State Vibration <\/td>\n<\/tr>\n
143<\/td>\nFigure 2 Deflection Measurement at the Intersection of Pipe and Elbow
Figure 3 Single Span Deflection Measurement
Figure 4 Cantilever Span Deflection Measurement
Figure 5 Cantilever Span\/Elbow Span in-Plane Deflection Measurement
Figure 6 Cantilever Span\/Elbow Guided Span in-Plane Deflection Measurement
Figure 7 Span\/Elbow Span Out-of-Plane Deflection Measurement, Span Ratio < 0.5 <\/td>\n<\/tr>\n
144<\/td>\nFigure 8 Span\/Elbow Span Out-of-Plane Deflection Measurement, Span Ratio > 0.5
Figure 9 Span\/Elbow Span Out-of-Plane Configuration Coefficient Versus Ratio of Spans <\/td>\n<\/tr>\n
145<\/td>\nFigure 10 Correction Factor C1 <\/td>\n<\/tr>\n
146<\/td>\n5.2 Transient Vibration
5.3 Inaccessible Piping (for Both Steady-State and Transient Vibration Evaluation)
6 RIGOROUS VERIFICATION METHOD FOR STEADY-STATE AND TRANSIENT VIBRATION
6.1 Modal Response Technique <\/td>\n<\/tr>\n
147<\/td>\n6.2 Measured Stress Technique
7 INSTRUMENTATION AND VIBRATION MEASUREMENT REQUIREMENTS
7.1 General Requirements <\/td>\n<\/tr>\n
148<\/td>\n8 CORRECTIVE ACTION
Table 2 Examples of Specifications of VMS Minimum Requirements; Measured Variable \u2014 Displacement <\/td>\n<\/tr>\n
149<\/td>\nPart 3, Nonmandatory Appendix A Instrumentation and Measurement Guidelines
A-1 VISUAL METHODS (VMG 3)
A-2 ELECTRONIC MEASUREMENT METHODS (VMG 2 AND VMG 1) <\/td>\n<\/tr>\n
152<\/td>\nPart 3, Nonmandatory Appendix B Analysis Methods
B-1 FOURIER TRANSFORM METHOD1 The user of this method is referred to the latest revision of ANSI S2.10, Methods for Analysis and Presentation of Shock and Vibration Data.
B-2 OTHER METHODS <\/td>\n<\/tr>\n
153<\/td>\nPart 3, Nonmandatory Appendix C Test\/Analysis Correlation Methods
C-1 TEST\/ANALYSIS CORRELATION
C-2 EVALUATION OF THE MEASURED RESPONSES <\/td>\n<\/tr>\n
154<\/td>\nPart 3, Nonmandatory Appendix D Velocity Criterion
D-1 VELOCITY CRITERION
D-2 SCREENING VELOCITY CRITERION
D-3 USE OF SCREENING VIBRATION VELOCITY VALUE <\/td>\n<\/tr>\n
155<\/td>\nPart 3, Nonmandatory Appendix E Excitation Mechanisms, Responses, and Corrective Actions
E-1 EXCITATION MECHANISMS AND PIPING RESPONSES <\/td>\n<\/tr>\n
157<\/td>\nE-2 ADDITIONAL TESTING AND ANALYSIS <\/td>\n<\/tr>\n
158<\/td>\nPart 3, Nonmandatory Appendix F Flowchart \u2014 Outline of Vibration Qualification of Piping Systems <\/td>\n<\/tr>\n
159<\/td>\nFigure F-1 Flowchart \u2014 Outline of Vibration Qualification of Piping Systems <\/td>\n<\/tr>\n
160<\/td>\nPart 3, Nonmandatory Appendix G Qualitative Evaluations <\/td>\n<\/tr>\n
161<\/td>\nPart 3, Nonmandatory Appendix H Guidance for Monitoring Piping Steady-State Vibration Per Vibration Monitoring Group 2
H-1 PURPOSE
H-2 ASSUMPTIONS
H-3 IMPLEMENTATION <\/td>\n<\/tr>\n
162<\/td>\nFigure H-1 Monitoring and Qualification of Piping Steady-State Vibration <\/td>\n<\/tr>\n
164<\/td>\nH-4 ALLOWABLE DISPLACEMENT LIMIT
Table H-1 Recommended Actions for Piping Vibration Problem Resolution <\/td>\n<\/tr>\n
166<\/td>\nPart 3, Nonmandatory Appendix I Acceleration Limits for Small Branch Piping <\/td>\n<\/tr>\n
167<\/td>\nFigure I-1 Determination of LE and WT <\/td>\n<\/tr>\n
168<\/td>\nPart 5 Inservice Monitoring of Core Support Barrel Axial Preload in Pressurized Water Reactor Power Plants
1 PURPOSE AND SCOPE
1.1 Purpose
1.2 Scope
1.3 Application
1.4 Definitions
2 BACKGROUND <\/td>\n<\/tr>\n
169<\/td>\nFigure 1 Reactor Arrangement Showing Typical Ex-Core Detector Locations <\/td>\n<\/tr>\n
170<\/td>\n3 PROGRAM DESCRIPTION
4 BASELINE PHASE
4.1 Objective
4.2 Data Acquisition Periods
4.3 Data Acquisition and Reduction <\/td>\n<\/tr>\n
171<\/td>\nTable 1 Summary of Program Phases <\/td>\n<\/tr>\n
172<\/td>\n4.4 Data Evaluation
5 SURVEILLANCE PHASE
5.1 Objective
5.2 Frequency of Data Acquisition
5.3 Data Acquisition and Reduction
5.4 Data Evaluation
6 DIAGNOSTIC PHASE
6.1 Objective
6.2 Data Acquisition Periods <\/td>\n<\/tr>\n
173<\/td>\n6.3 Data Acquisition, Reduction, and Evaluation <\/td>\n<\/tr>\n
174<\/td>\nPart 5, Nonmandatory Appendix A Theoretical Basis <\/td>\n<\/tr>\n
175<\/td>\nFigure A-1 Idealized Analysis for Core Barrel Motion <\/td>\n<\/tr>\n
176<\/td>\nPart 5, Nonmandatory Appendix B Data Reduction Techniques
B-1 NORMALIZED POWER SPECTRAL DENSITY (NPSD)
B-2 NORMALIZED ROOT MEAN SQUARE OF THE SIGNAL
B-3 NORMALIZED CROSS-POWER SPECTRAL DENSITY (NCPSD), COHERENCE (COH), AND PHASE (\u03d5) <\/td>\n<\/tr>\n
177<\/td>\nFigure B-1 Representative Spectra <\/td>\n<\/tr>\n
178<\/td>\nPart 5, Nonmandatory Appendix C Data Acquisition and Reduction
C-1 INSTRUMENTATION
C-2 SIGNAL CONDITIONING
C-3 DATA ACQUISITION PARAMETERS
C-4 PLANT CONDITIONS FOR DATA ACQUISITION
C-5 DATA REDUCTION PARAMETERS <\/td>\n<\/tr>\n
179<\/td>\nC-6 SIGNAL BUFFERING
C-7 DATA ASSURANCE
C-8 DATA RETENTION
C-9 STATISTICAL UNCERTAINTIES IN NEUTRON NOISE DATA ANALYSIS
Table C-1 Parameters to Be Documented During Data Acquisition <\/td>\n<\/tr>\n
181<\/td>\nPart 5, Nonmandatory Appendix D Data Evaluation
D-1 BASELINE <\/td>\n<\/tr>\n
182<\/td>\nD-2 SURVEILLANCE PHASE
D-3 DIAGNOSTIC PHASE
Figure D-1 Narrowband rms <\/td>\n<\/tr>\n
183<\/td>\nFigure D-2 Example of Wideband rms Amplitude Versus Boron Concentration <\/td>\n<\/tr>\n
185<\/td>\nPart 5, Nonmandatory Appendix E Guidelines for Evaluating Baseline Signal Deviations <\/td>\n<\/tr>\n
186<\/td>\nFigure E-1 Typical Ex-Core Neutron Noise Signatures From Six PWRs <\/td>\n<\/tr>\n
187<\/td>\nFigure E-2 Typical Baseline NPSD Range <\/td>\n<\/tr>\n
188<\/td>\nFigure E-3 Examples of Changes in the Neutron Noise Signature Over a Fuel Cycle <\/td>\n<\/tr>\n
189<\/td>\nFigure E-4 Example of Loss of Axial Restraint <\/td>\n<\/tr>\n
190<\/td>\nPart 5, Nonmandatory Appendix F Correlation of rms Amplitude of the Ex-Core Signal (Percent Noise) and Amplitude of Core Barrel Motion
Table F-1 Ratio of the Amplitude of the Neutron Noise to Core Barrel Motion <\/td>\n<\/tr>\n
191<\/td>\nPart 5, Nonmandatory Appendix G Bibliography <\/td>\n<\/tr>\n
192<\/td>\nPart 7 Thermal Expansion Testing of NuclearPower Plant Piping Systems
1 SCOPE
2 DEFINITIONS <\/td>\n<\/tr>\n
193<\/td>\n3 GENERAL REQUIREMENTS
3.1 Specific Requirements <\/td>\n<\/tr>\n
194<\/td>\n3.2 Acceptance Criteria
4 RECONCILIATION METHODS <\/td>\n<\/tr>\n
195<\/td>\n4.1 Reconciliation Method 1
4.2 Reconciliation Method 2
4.3 Reconciliation Method 3
5 CORRECTIVE ACTION <\/td>\n<\/tr>\n
196<\/td>\nFigure 1 System Heatup, Reconciliation, and Corrective Action <\/td>\n<\/tr>\n
197<\/td>\n6 INSTRUMENTATION REQUIREMENTS FOR THERMAL EXPANSION MEASUREMENT
6.1 General Requirements
Figure 2 Typical Components of a TEMS
Table 1 An Example of Specification of TEMS Minimum Requirements <\/td>\n<\/tr>\n
198<\/td>\n6.2 Precautions <\/td>\n<\/tr>\n
199<\/td>\nPart 7, Nonmandatory Appendix A TEMS Instrumentation and Equipment Guidelines <\/td>\n<\/tr>\n
200<\/td>\nTable A-1 Typical Transducers <\/td>\n<\/tr>\n
201<\/td>\nTable A-2 Typical Signal Conditioners
Table A-3 Typical Data Processing, Display, and Recording Equipment <\/td>\n<\/tr>\n
202<\/td>\nPart 7, Nonmandatory Appendix B Thermal Stratification and Thermal Transients
B-1 INTRODUCTION
B-2 THERMAL STRATIFICATION <\/td>\n<\/tr>\n
203<\/td>\nB-3 THERMAL TRANSIENTS
Figure B-1 Simplified Schematic of Surge Line Stratification <\/td>\n<\/tr>\n
205<\/td>\nPart 12 Loose Part Monitoring in Water-CooledReactor Nuclear Power Plants
1 INTRODUCTION
1.1 Scope
1.2 Overview
2 DEFINITIONS <\/td>\n<\/tr>\n
207<\/td>\n3 REFERENCES
4 EQUIPMENT
4.1 General
4.2 Field Equipment <\/td>\n<\/tr>\n
208<\/td>\nFigure 1 Typical Broadband Sensor Response to Nearby Impact
Figure 2 Typical Broadband Sensor Response to More Distant Impact <\/td>\n<\/tr>\n
209<\/td>\nFigure 3 Range of Loose Part Signal Amplitude and Predominant Frequency Content
Figure 4 Field Equipment <\/td>\n<\/tr>\n
210<\/td>\nFigure 5 Direct Stud Mount
Figure 6 Clamped Mount <\/td>\n<\/tr>\n
211<\/td>\nTable 1 Recommended PWR Accelerometer Locations <\/td>\n<\/tr>\n
212<\/td>\nFigure 7 Recommended Sensor Array for PWR With U-Tube Steam Generator <\/td>\n<\/tr>\n
213<\/td>\nFigure 8 Recommended Sensor Array for PWR With Once-Through Steam Generator
Table 2 Recommended BWR Accelerometer Locations <\/td>\n<\/tr>\n
214<\/td>\nFigure 9 Recommended Sensor Array for BWR <\/td>\n<\/tr>\n
215<\/td>\n4.3 Control Cabinet Equipment <\/td>\n<\/tr>\n
216<\/td>\n4.4 Analysis and Diagnostic Equipment
5 PROGRAM ELEMENTS
5.1 General
5.2 ALARA
5.3 Precautions
5.4 Calibration <\/td>\n<\/tr>\n
217<\/td>\n5.5 Baseline Impact Testing
Figure 10 Block Diagram for Charge Converter Calibration Tests <\/td>\n<\/tr>\n
218<\/td>\nFigure 11 Cable Properties (Typical for Twisted-Shielded Pair Cable) <\/td>\n<\/tr>\n
219<\/td>\n5.6 Initial LPM Setpoints
5.7 Heat-Up and Cool-Down Monitoring
5.8 Periodic Monitoring and Testing <\/td>\n<\/tr>\n
220<\/td>\n5.9 Alarm Response and Diagnostics
6 DOCUMENTATION <\/td>\n<\/tr>\n
222<\/td>\nPart 12, Nonmandatory Appendix A References <\/td>\n<\/tr>\n
223<\/td>\nPart 16 Performance Testing and Monitoring of Standby Diesel Generator Systems in Water-Cooled Reactor Nuclear Power Plants
1 INTRODUCTION
1.1 Scope
1.2 Purpose
1.3 Risk-Informed Analysis
1.4 Subsystems Included Within the Diesel Generator Boundary <\/td>\n<\/tr>\n
224<\/td>\nFigure 1 Boundary and Support Systems of Emergency Diesel Generator Systems <\/td>\n<\/tr>\n
225<\/td>\n1.5 Definitions <\/td>\n<\/tr>\n
226<\/td>\n2 NONOPERATING CHECKS
2.1 Post-Maintenance Checks
2.2 Pre-Start Checks
3 TESTING
3.1 Post-Maintenance\/Baseline Testing <\/td>\n<\/tr>\n
227<\/td>\n3.2 Periodic Tests <\/td>\n<\/tr>\n
228<\/td>\nTable 1 Periodic Tests <\/td>\n<\/tr>\n
230<\/td>\n3.3 Other Testing Guidelines
4 INSERVICE MONITORING OF COMPONENT OPERATING AND STANDBY CONDITIONS <\/td>\n<\/tr>\n
231<\/td>\n4.1 Engine
4.2 Lubrication Subsystem
4.3 Jacket Water and Intercooler Subsystem
4.4 Starting Subsystem
4.5 Combustion Air Intake Subsystem <\/td>\n<\/tr>\n
232<\/td>\n4.6 Exhaust Subsystem
4.7 Fuel Oil Subsystem
4.8 Crankcase Ventilation Subsystem
4.9 Governor and Control Subsystem
4.10 Generator Subsystem
4.11 Ventilation and Cooling Subsystem
4.12 Exciter and Voltage Regulator Subsystem
4.13 Control and Protection Subsystem
4.14 Diesel Generator Output Breaker
5 OTHER CONDITION MONITORING METHODS\/GUIDELINES
5.1 Diesel Engine Analysis <\/td>\n<\/tr>\n
233<\/td>\n5.2 Vibration Analysis <\/td>\n<\/tr>\n
234<\/td>\n5.3 Lube Oil Analysis
5.4 Cooling Water Analysis
5.5 Thermography <\/td>\n<\/tr>\n
235<\/td>\n6 ALARM AND SHUTDOWN DURING TESTS
7 DIESEL GENERATOR OPERATING DATA AND RECORDS
7.1 Data\/Records
7.2 Data Evaluation and Trending
7.3 Failure to Function (Root Cause) <\/td>\n<\/tr>\n
236<\/td>\nPart 16, Nonmandatory Appendix A Post-Major Maintenance Test Data
Figure A-1 Post-Major Maintenance Test Data Form <\/td>\n<\/tr>\n
237<\/td>\nPart 16, Nonmandatory Appendix B Functional\/Inservice Test Data
Figure B-1 Functional\/Inservice Test Data Form <\/td>\n<\/tr>\n
238<\/td>\nPart 16, Nonmandatory Appendix C Data Trending Examples <\/td>\n<\/tr>\n
239<\/td>\nFigure C-1 Typical Lube Oil System <\/td>\n<\/tr>\n
240<\/td>\nFigure C-2 Typical Jacket Water System <\/td>\n<\/tr>\n
241<\/td>\nFigure C-3 Intercooler Water System <\/td>\n<\/tr>\n
242<\/td>\nFigure C-4 Typical Air\/Exhaust System <\/td>\n<\/tr>\n
243<\/td>\nFigure C-5 Typical Fuel Oil System <\/td>\n<\/tr>\n
244<\/td>\nPart 21 Inservice Performance Testing of Heat Exchangersin Water-Cooled Reactor Nuclear Power Plants
1 INTRODUCTION
1.1 Scope
1.2 Exclusions
1.3 Owner\u2019s Responsibility
2 DEFINITIONS <\/td>\n<\/tr>\n
246<\/td>\n3 REFERENCES
3.1 Standard References
3.2 Appendix References <\/td>\n<\/tr>\n
247<\/td>\n4 SELECTION AND PRIORITIZATION OF HEAT EXCHANGERS
4.1 Heat Exchanger Selection
4.2 Heat Exchanger Prioritization
5 BASIC REQUIREMENTS
5.1 Program Requirements
5.2 Preservice Requirements
5.3 Inservice Requirements <\/td>\n<\/tr>\n
248<\/td>\n5.4 Interval Requirements
6 SELECTION OF METHODS
6.1 Functional Test Method <\/td>\n<\/tr>\n
249<\/td>\nFigure 1 Intervals, Limits, and Parameter Trending (Typical) <\/td>\n<\/tr>\n
250<\/td>\nFigure 2 Method Selection Chart <\/td>\n<\/tr>\n
251<\/td>\n6.2 Heat-Transfer Coefficient Test Method (Without Phase Change)
6.3 Heat-Transfer Coefficient Test Method (With Condensation) <\/td>\n<\/tr>\n
252<\/td>\n6.4 Transient Test Method
6.5 Temperature Effectiveness Test Method <\/td>\n<\/tr>\n
253<\/td>\n6.6 Batch Test Method <\/td>\n<\/tr>\n
254<\/td>\n6.7 Temperature-Difference Monitoring Method
6.8 Pressure-Loss Monitoring Method <\/td>\n<\/tr>\n
255<\/td>\n6.9 Visual Inspection Monitoring Method
6.10 Parameter Trending
7 TESTING AND MONITORING CONDITIONS
7.1 Steady State <\/td>\n<\/tr>\n
256<\/td>\n7.2 Flow Regimes <\/td>\n<\/tr>\n
257<\/td>\n7.3 Temperatures
8 ERRORS, SENSITIVITIES, AND UNCERTAINTIES
8.1 Measurement Errors
8.2 Result Sensitivities
8.3 Total Uncertainty <\/td>\n<\/tr>\n
258<\/td>\n8.4 Calculations and Averaging
8.5 Validity Check
8.6 Correlational Uncertainty
9 ACCEPTANCE CRITERIA
9.1 System Operability Limits
9.2 Component Design Limits <\/td>\n<\/tr>\n
259<\/td>\n9.3 Required Action Limits
10 CORRECTIVE ACTION
11 RECORDS AND RECORD KEEPING
11.1 Equipment Records
11.2 Plans and Procedures <\/td>\n<\/tr>\n
260<\/td>\n11.3 Record of Results
11.4 Record of Corrective Action <\/td>\n<\/tr>\n
261<\/td>\nPart 21, Nonmandatory Appendix A Diagnostics
A-1 HEAT DUTY DEFICIENCY <\/td>\n<\/tr>\n
262<\/td>\nA-2 EXCESSIVE PRESSURE LOSS
A-3 MECHANICAL DYSFUNCTION <\/td>\n<\/tr>\n
264<\/td>\nPart 21, Nonmandatory Appendix B Precautions
B-1 EXCESSIVE FLOW
B-2 CROSSING FLOW REGIMES
B-3 TEMPERATURE STRATIFICATION
B-4 OVERCOOLING <\/td>\n<\/tr>\n
265<\/td>\nB-5 FLASHING
B-6 EFFECTIVE SURFACE AREA
B-7 WATER HAMMER
B-8 MISCELLANEOUS CONSIDERATIONS
B-9 FLOW INSTABILITY
B-10 PLATE HEAT EXCHANGERS
B-11 FOULING CHARACTERISTICS <\/td>\n<\/tr>\n
266<\/td>\nB-12 COMPONENT DESIGN FUNCTION
B-13 THERMAL DELAYS
B-14 MATERIAL PROPERTIES <\/td>\n<\/tr>\n
267<\/td>\nPart 21, Nonmandatory Appendix C Examples
C-1 FUNCTIONAL TEST METHOD
C-2 HEAT TRANSFER COEFFICIENT TEST METHOD (WITHOUT PHASE CHANGE) <\/td>\n<\/tr>\n
277<\/td>\nC-3 HEAT TRANSFER COEFFICIENT TEST METHOD (WITH CONDENSATION) <\/td>\n<\/tr>\n
278<\/td>\nFigure C-1 One Tube Row Air-to-Water Cross-Flow Heat Exchanger <\/td>\n<\/tr>\n
283<\/td>\nC-4 TRANSIENT TEST METHOD <\/td>\n<\/tr>\n
285<\/td>\nFigure C-3 Schematic Representation of a Countercurrent Shell-and-Tube Heat Exchanger
Figure C-4 A Small Element of a Countercurrent Shell and-Tube Heat Exchanger <\/td>\n<\/tr>\n
287<\/td>\nC-5 TEMPERATURE EFFECTIVENESS TEST METHOD <\/td>\n<\/tr>\n
288<\/td>\nC-6 BATCH TEST METHOD <\/td>\n<\/tr>\n
290<\/td>\nC-7 TEMPERATURE DIFFERENCE MONITORING METHOD <\/td>\n<\/tr>\n
291<\/td>\nFigure C-5 Cooling Water Inlet Temperature Versus Temperature Difference <\/td>\n<\/tr>\n
292<\/td>\nC-8 PRESSURE LOSS MONITORING METHOD <\/td>\n<\/tr>\n
293<\/td>\nC-9 VISUAL INSPECTION MONITORING METHOD <\/td>\n<\/tr>\n
294<\/td>\nC-10 PARAMETER TRENDING <\/td>\n<\/tr>\n
295<\/td>\nC-11 UNCERTAINTY ANALYSIS <\/td>\n<\/tr>\n
299<\/td>\nPart 24 Reactor Coolant and Recirculation Pump Condition Monitoring
1 INTRODUCTION
1.1 Scope
1.2 Approach
2 DEFINITIONS <\/td>\n<\/tr>\n
301<\/td>\n3 REFERENCES
4 MACHINE FAULTS
4.1 Introduction
5 VIBRATION, AXIAL POSITION, AND BEARING TEMPERATURE MONITORING EQUIPMENT
5.1 General <\/td>\n<\/tr>\n
302<\/td>\nTable 1 Pumpset Mechanical Faults
Table 2 Seal Faults
Table 3 Electrical Motor Faults <\/td>\n<\/tr>\n
303<\/td>\n5.2 Monitoring System
5.3 Radial Proximity Sensor Locations
5.4 Axial Proximity Sensor Locations
5.5 Phase-Reference Sensor Location <\/td>\n<\/tr>\n
304<\/td>\n5.6 Bearing Temperature Sensors
5.7 Sensor Locations for Optional Accelerometers
5.8 Other Specifications
6 VIBRATION DATA ANALYSIS SYSTEM REQUIREMENTS
6.1 Introduction
6.2 Data Acquisition for Dynamic Signals <\/td>\n<\/tr>\n
305<\/td>\n6.3 System Accuracy and Calibration
6.4 Data Analysis and Display
6.5 Data Storage
6.6 Continuous Display of Dynamic Signals <\/td>\n<\/tr>\n
306<\/td>\n7 SEAL MONITORING
7.1 Introduction
7.2 Monitoring System
7.3 Monitoring and Analysis Requirements <\/td>\n<\/tr>\n
307<\/td>\n7.4 Seal Alarm Response
7.5 Enhanced Monitoring of a Troubled Seal
8 VIBRATION, AXIAL POSITION, AND BEARING TEMPERATURE MONITORING
8.1 Introduction
8.2 Postmaintenance Monitoring
Table 4 Minimum Monitoring and Recording Intervals <\/td>\n<\/tr>\n
308<\/td>\n8.3 Baseline
8.4 Periodic Monitoring
8.5 Preoutage Coastdown <\/td>\n<\/tr>\n
309<\/td>\n8.6 Vibration Alarm Response
8.7 Enhanced Monitoring of a Troubled Pumpset
9 ALARM SETTINGS
9.1 Determining Alarm Points for Overall Vibration Amplitude
9.2 Determining 1\u00d7 and 2\u00d7 Vector Acceptance Regions
9.3 Determining Alarm Points for Thrust Position <\/td>\n<\/tr>\n
310<\/td>\n9.4 Determining Alarm Points for Bearing Temperature
9.5 Alarm Settings
10 ANALYSIS AND DIAGNOSTICS
10.1 Introduction
10.2 Data Types
10.3 Analysis Methods
10.4 Data Analysis
Table 5 Typical Thrust Position Alarm Setpoints for a Pump With Normal Upthrust <\/td>\n<\/tr>\n
311<\/td>\n11 ADDITIONAL TECHNOLOGIES
11.1 Thermography
11.2 Lube Oil Analysis
11.3 Motor Current Signature Analysis
11.4 Motor Electrical Monitoring and Testing
11.5 Loose Parts Monitoring
12 OTHER
12.1 Calibrations
12.2 Quality <\/td>\n<\/tr>\n
312<\/td>\nPart 24, Nonmandatory Appendix A References <\/td>\n<\/tr>\n
313<\/td>\nPart 24, Nonmandatory Appendix B Thermography <\/td>\n<\/tr>\n
314<\/td>\nPart 24, Nonmandatory Appendix C Lube Oil Analysis <\/td>\n<\/tr>\n
315<\/td>\nPart 24, Nonmandatory Appendix D Motor Current Signature Analysis <\/td>\n<\/tr>\n
316<\/td>\nPart 24, Nonmandatory Appendix E Loose Parts Monitoring <\/td>\n<\/tr>\n
317<\/td>\nPart 25 Performance Testing of Emergency Core Cooling Systems in Light-Water Reactor Power Plants <\/td>\n<\/tr>\n
318<\/td>\nPart 26 Determination of Reactor Coolant Temperature From Diverse Measurements
1 INTRODUCTION
1.1 Scope
1.2 Applicability
1.3 Basic Methodology
2 DEFINITIONS <\/td>\n<\/tr>\n
319<\/td>\n3 REFERENCES
4 REQUIREMENTS
4.1 Plant Conditions
4.2 Test Equipment
4.3 Uncertainty Methodologies <\/td>\n<\/tr>\n
320<\/td>\n5 DEVELOP TEST PROCEDURES AND PERFORM TESTING
5.1 Establish Primary-to-Secondary Side \u0394Tps
5.2 Test Procedure Development <\/td>\n<\/tr>\n
321<\/td>\n5.3 Perform Test
6 DOCUMENTATION <\/td>\n<\/tr>\n
322<\/td>\nPart 26, Nonmandatory Appendix A Measurement Equipment Uncertainties <\/td>\n<\/tr>\n
323<\/td>\nPart 28 Standard for Performance Testing of Systems in Water-Cooled Reactor Nuclear Power Plants
1 INTRODUCTION
1.1 Scope
1.2 Exclusions
1.3 Owner\u2019s Responsibilities
2 DEFINITIONS <\/td>\n<\/tr>\n
324<\/td>\n3 REFERENCES
4 GENERAL TESTING REQUIREMENTS
4.1 Establish System Test Boundaries
4.2 Identify System Performance Requirements <\/td>\n<\/tr>\n
325<\/td>\n4.3 Identify Testable Characteristics
4.4 Establish Acceptance Criteria <\/td>\n<\/tr>\n
326<\/td>\n4.5 Develop Test Procedures and Perform Testing, Inspections, and Engineering Analysis <\/td>\n<\/tr>\n
329<\/td>\n5 SPECIFIC TESTING REQUIREMENTS
5.1 Emergency Core Cooling Systems
5.2 Auxiliary or Emergency Feedwater Systems
5.3 Closed Cooling Water Systems
5.4 Emergency Service Water Systems
5.5 Instrument Air Systems
6 EVALUATE TEST DATA
6.1 Compare Data to Acceptance Criteria
6.2 Trend Test Data
6.3 Evaluate Test Interval <\/td>\n<\/tr>\n
330<\/td>\n7 DOCUMENTATION
7.1 System Test Plan
7.2 Test Results and Corrective Actions <\/td>\n<\/tr>\n
331<\/td>\nPart 28, Mandatory Appendix I Specific Testing Requirements of Emergency Core Cooling Systems in BWR Power Plants
I-1 INTRODUCTION
I-2 DEFINITIONS
I-3 REFERENCE
I-4 BWR ECCS TESTING REQUIREMENTS <\/td>\n<\/tr>\n
335<\/td>\nPart 28, Mandatory Appendix II Specific Testing Requirements of Emergency Core Cooling Systems in PWR Power Plants
II-1 INTRODUCTION
II-2 DEFINITIONS
II-3 REFERENCES
II-4 PWR ECCS TESTING REQUIREMENTS <\/td>\n<\/tr>\n
338<\/td>\nPart 28, Mandatory Appendix III Specific Testing Requirements of Auxiliary or Emergency Feedwater Systems in Water-Cooled Reactor Nuclear Power Plants
III-1 INTRODUCTION
III-2 DEFINITION
III-3 REFERENCES
III-4 AUXILIARY FEEDWATER SYSTEM TESTING REQUIREMENTS <\/td>\n<\/tr>\n
340<\/td>\nPart 28, Mandatory Appendix IV Specific Testing Requirements of Closed Cooling Water Systems in Water-Cooled Reactor Nuclear Power Plants
IV-1 INTRODUCTION
IV-2 DEFINITIONS
IV-3 CLOSED COOLING WATER SYSTEM TESTING REQUIREMENTS <\/td>\n<\/tr>\n
341<\/td>\nFigure IV-1 CCWS Typical Flow Diagram <\/td>\n<\/tr>\n
344<\/td>\nPart 28, Mandatory Appendix V Specific Testing Requirements of Emergency Service Water Systems in Water-Cooled Reactor Nuclear Power Plants (Open Cooling Water Systems)
V-1 INTRODUCTION
V-2 DEFINITIONS
V-3 EMERGENCY SERVICE WATER SYSTEM TEST REQUIREMENTS
V-4 ESTABLISH SYSTEM TEST BOUNDARIES <\/td>\n<\/tr>\n
347<\/td>\nPart 28, Mandatory Appendix VI Specific Testing Requirements of Instrument Air Systems in Water-Cooled Reactor Nuclear Power Plants
VI-1 INTRODUCTION
VI-2 DEFINITIONS
VI-3 INSTRUMENT AIR SYSTEM TESTING REQUIREMENTS <\/td>\n<\/tr>\n
348<\/td>\nFigure VI-1 Typical Instrument Air System <\/td>\n<\/tr>\n
352<\/td>\nPart 28, Nonmandatory Appendix A Industry Guidance <\/td>\n<\/tr>\n
353<\/td>\nTable A-1 Operating Experience Information <\/td>\n<\/tr>\n
356<\/td>\nPart 28, Nonmandatory Appendix B Guidance for Testing Certain System Characteristics
B-1 PURPOSE
B-2 VERIFYING ECCS ACCUMULATOR DISCHARGE FLOW PATH RESISTANCE IN PWRS
B-3 TYPICAL PROCESS SUBSYSTEM
B-4 IDENTIFYING AND VERIFYING PUMP TDH VERSUS FLOW ACCEPTANCE CRITERIA
B-5 VERIFYING DISCHARGE FLOW PATH RESISTANCE <\/td>\n<\/tr>\n
357<\/td>\nFigure B-1 Typical Branch Line System
Figure B-2 Verifying Pump TDH Versus Flow: Correction of Measured Data for Instrument Accuracy <\/td>\n<\/tr>\n
358<\/td>\nFigure B-3 Verifying Pump TDH Versus Flow: Correction of Analysis Limits for Instrument Accuracy <\/td>\n<\/tr>\n
359<\/td>\nFigure B-4 Verifying Discharge Piping Overall Resistance: Correction of Measured Data for Instrument Accuracy
Figure B-5 Verifying Discharge Piping Overall Resistance: Correction of Analysis Limits for Instrument Accuracy <\/td>\n<\/tr>\n
360<\/td>\nB-6 VERIFYING BALANCED BRANCH LINE RESISTANCE
B-7 SYSTEM ADJUSTMENTS <\/td>\n<\/tr>\n
361<\/td>\nFigure B-6 Measured Subsystem Operating Point and Range of Operating Points Allowed by Analysis Limits <\/td>\n<\/tr>\n
362<\/td>\nPart 28, Nonmandatory Appendix C Measurement Accuracy of System Characteristics
C-1 BACKGROUND
C-2 NOMENCLATURE <\/td>\n<\/tr>\n
363<\/td>\nC-3 SENSITIVITY COEFFICIENTS
C-4 ACCURACY OF DIRECTLY MEASURED VARIABLES
C-5 ACCURACY OF DERIVED VARIABLES <\/td>\n<\/tr>\n
364<\/td>\nC-6 ACCURACY OF FLOW RATE
C-7 ACCURACY OF PUMP TDH <\/td>\n<\/tr>\n
365<\/td>\nC-8 ACCURACY OF SYSTEM RESISTANCE
C-9 EXAMPLE EVALUATION OF PUMP TDH ACCURACY <\/td>\n<\/tr>\n
366<\/td>\nTable C-1 Recorded Test Data
Table C-2 Calculated Pump Head
Table C-3 Sensitivity Coefficients for Pump TDH <\/td>\n<\/tr>\n
368<\/td>\nTable C-4 Pump TDH Overall Accuracy Calculation <\/td>\n<\/tr>\n
369<\/td>\nPart 29 Alternative Treatment Requirements for RISC-3 Pumps and Valves <\/td>\n<\/tr>\n
370<\/td>\nDIVISION 3 OM GUIDES
Part 11 Vibration Testing and Assessment of Heat Exchangers
1 INTRODUCTION
1.1 Scope
2 DEFINITIONS
3 REFERENCES
4 BACKGROUND DESCRIPTION <\/td>\n<\/tr>\n
371<\/td>\n5 SELECTION OF EQUIPMENT TO BE TESTED
5.1 Equipment Selection Factors <\/td>\n<\/tr>\n
372<\/td>\n6 SELECTION OF TEST METHOD
6.1 Test Measurement Methods <\/td>\n<\/tr>\n
373<\/td>\n6.2 Bases for Selection
6.3 Precautions
7 TEST REQUIREMENTS
7.1 Direct Measurement of Tube Vibration <\/td>\n<\/tr>\n
375<\/td>\nFigure 1 Tube Bundle Configuration With Tube Groupings Most Susceptible to Fluidelastic Instability Denoted by Cross-Hatching <\/td>\n<\/tr>\n
378<\/td>\n7.2 Microphone Scan for Tube Impacting <\/td>\n<\/tr>\n
379<\/td>\n7.3 External Monitoring for Impacting <\/td>\n<\/tr>\n
380<\/td>\n8 TEST CONDITIONS
8.1 Shell-Side Flow Rate
8.2 Rough Process Conditions
9 DOCUMENTATION <\/td>\n<\/tr>\n
381<\/td>\n10 PRECAUTIONS <\/td>\n<\/tr>\n
382<\/td>\nPart 11, Nonmandatory Appendix A Causes of Vibration
A-1 DISCUSSION <\/td>\n<\/tr>\n
383<\/td>\nA-2 REFERENCES <\/td>\n<\/tr>\n
384<\/td>\nFigure A-1 Root Mean Square (rms) Acceleration Versus Flow Rate From Three Typical Tubes <\/td>\n<\/tr>\n
385<\/td>\nFigure A-2 Tube Response PSDs for Various Shell-Side Flow Rates (Ordinate Not to Scale) <\/td>\n<\/tr>\n
386<\/td>\nPart 11 , Nonmandatory Appendix B Methods for Comparative Evaluation of Fluidelastic and Turbulence-Induced Vibration
B-1 INTRODUCTION
B-2 NOMENCLATURE
B-3 FLUIDELASTIC INSTABILITY <\/td>\n<\/tr>\n
387<\/td>\nB-4 SIMPLIFIED METHOD FOR ESTIMATING TURBULENCE-INDUCED VIBRATION IN A SIMILAR DESIGN <\/td>\n<\/tr>\n
388<\/td>\nB-5 REFERENCES
Table B-1 Upper Bound Estimate of the Random Turbulence Excitation Coefficient for Tube Bundle <\/td>\n<\/tr>\n
389<\/td>\nPart 11, Nonmandatory Appendix C Test Guidelines for Dynamic Characterization of Tubes
C-1 TUBE MECHANICAL VIBRATION CHARACTERISTICS
C-2 MODAL FREQUENCIES AND DAMPING DETERMINATION
C-3 MODE SHAPE CHARACTERIZATION <\/td>\n<\/tr>\n
390<\/td>\nPart 11, Nonmandatory Appendix D External Vibration Surveys
D-1 INTRODUCTION
D-2 MEASUREMENT LOCATIONS
D-3 ACCEPTANCE GUIDELINES AND RECOMMENDED FOLLOW-UP <\/td>\n<\/tr>\n
391<\/td>\nPart 11, Nonmandatory Appendix E Detection Methods and Data Interpretation
E-1 INTRODUCTION
E-2 AURAL OBSERVATIONS
E-3 ACCELEROMETER SIGNAL CHARACTERISTICS DURING METAL-TO-METAL IMPACTING
E-4 DETECTION OF VIBRATION CAUSED BY FLUIDELASTIC EXCITATION WITH TUBE-MOUNTED SENSORS <\/td>\n<\/tr>\n
392<\/td>\nFigure E-1 Acoustic rms Spectrum for Nonimpacting Tube (No. 6-1) and Impacting Tube (No. 6-2) <\/td>\n<\/tr>\n
393<\/td>\nFigure E-2 Correlation of Signals From Microphone and In-Tube Accelerometer <\/td>\n<\/tr>\n
395<\/td>\nFigure E-3 Root Mean Square (rms) Tube Response Versus Flow Velocity
Figure E-4 Response Versus Flow Velocity (Laboratory Test of 5 \u00d7 5 Tube Array) <\/td>\n<\/tr>\n
396<\/td>\nE-5 TUBE SUPPORT PLATE INTERACTION <\/td>\n<\/tr>\n
397<\/td>\nFigure E-5 Response Versus Flow Rate for Four Tubes in Industrial Size Shell-and-Tube Heat Exchanger (Open Symbol: Increasing Flow; Solid Symbol: Decreasing Flow) <\/td>\n<\/tr>\n
398<\/td>\nFigure E-6 Displacement Time Histories From Accelerometer Pair in Heat Exchanger Tube Vibration Test
Figure E-7 Acceleration Time Histories From Accelerometer Pair in Heat Exchanger Tube Vibration Test <\/td>\n<\/tr>\n
399<\/td>\nFigure E-8 Tube Vibration Patterns From X-Y Probe and Test of Industrial Size Shell-and-Tube Heat Exchanger <\/td>\n<\/tr>\n
400<\/td>\nFigure E-9 Frequency Response Curves for Tubes in Industrial Size Shell-and-Tube Heat Exchanger <\/td>\n<\/tr>\n
401<\/td>\nFigure E-10 Schematic of Test Setup <\/td>\n<\/tr>\n
402<\/td>\nFigure E-11 Root Mean Square (rms) Tube Displacements As Function of Flow Velocity (Diametral Gap of 1.02 mm) <\/td>\n<\/tr>\n
403<\/td>\nFigure E-12 Frequency Spectra of Tube Displacement at Location \u201cA\u201d (Diametral Gap of 1.27 mm) <\/td>\n<\/tr>\n
404<\/td>\nFigure E-13 Tube Displacement Time Histories at Location \u201cA\u201d (Diametral Gap of 0.51 mm) <\/td>\n<\/tr>\n
405<\/td>\nE-6 REFERENCES <\/td>\n<\/tr>\n
406<\/td>\nPart 11, Nonmandatory Appendix F Vibration Acceptance Guidelines
F-1 INTRODUCTION
F-2 GUIDELINES FOR INITIAL ASSESSMENT
F-3 FOLLOW-UP ACTIONS
F-4 METHODS FOR DETAILED WEAR ASSESSMENTS <\/td>\n<\/tr>\n
407<\/td>\nF-5 GUIDELINES FOR THE EVALUATION OF EXTERNAL VIBRATION LEVELS
F-6 REFERENCES <\/td>\n<\/tr>\n
408<\/td>\nPart 11, Nonmandatory Appendix G Installation of Strain Gages <\/td>\n<\/tr>\n
409<\/td>\nPart 14 Vibration Monitoring of Rotating Equipmentin Nuclear Power Plants
1 INTRODUCTION
1.1 Scope
1.2 Purpose
2 DEFINITIONS <\/td>\n<\/tr>\n
410<\/td>\n3 REFERENCES
3.1 Referenced Standards
3.2 Referenced Publications <\/td>\n<\/tr>\n
411<\/td>\n4 VIBRATION MONITORING
4.1 Types of Monitoring
4.2 Quality Considerations
Table 1 Comparison of Periodic and Continuous Monitoring and Relative Advantages <\/td>\n<\/tr>\n
412<\/td>\nTable 2 Transducer Location Guidelines \u2014 Turbines
Table 3 Transducer Location Guidelines \u2014 Equipment With Antifriction Bearings <\/td>\n<\/tr>\n
413<\/td>\nTable 4 Transducer Location Guidelines \u2014 Horizontal Pumps \u2014 Fluid Film Bearings
Table 5 Transducer Location Guidelines \u2014 Motor-Driven Vertical Pumps \u2014 Fluid Film Bearings <\/td>\n<\/tr>\n
414<\/td>\n5 ESTABLISHING THE BASELINE
5.1 Baseline Data
Table 6 Transducer Location Guidelines \u2014 Electric Motors <\/td>\n<\/tr>\n
415<\/td>\nFigure 1 An Example of a Vibration Data Sheet <\/td>\n<\/tr>\n
416<\/td>\n5.2 Methods to Establish Baseline
Figure 2 An Example of a Vibration Trend Curve <\/td>\n<\/tr>\n
417<\/td>\n6 ESTABLISHING VIBRATION LIMITS
6.1 Purpose
6.2 Parameters
6.3 Criteria <\/td>\n<\/tr>\n
418<\/td>\n7 DATA ACQUISITION
8 HARDWARE
Figure 3 Vibration Level Trend Plot of Condition One (For Defined Vibration Limits From Manufacturer\u2019s Data or Equivalent) <\/td>\n<\/tr>\n
419<\/td>\n9 DIAGNOSTICS
9.1 Purpose
9.2 Troubleshooting
Figure 4 Vibration Level Trend Plot of Condition Two (For Defined Vibration Limits From Manufacturer\u2019s Data or Equivalent) <\/td>\n<\/tr>\n
420<\/td>\nTable 7 Vibration Troubleshooting Chart <\/td>\n<\/tr>\n
421<\/td>\nPart 14, Nonmandatory Appendix A Instrumentation Selection and Use
A-1 INSTALLATION OF TRANSDUCERS <\/td>\n<\/tr>\n
422<\/td>\nA-2 CALIBRATION
A-3 PRETEST CONDITIONS
A-4 MEASURING AND RECORDING INFORMATION
A-5 SPECIAL CONSIDERATIONS
A-6 PERSONNEL <\/td>\n<\/tr>\n
423<\/td>\nPart 14, Nonmandatory Appendix B Transducers and Analysis Equipment
B-1 TRANSDUCERS <\/td>\n<\/tr>\n
424<\/td>\nTable B-1 Noncontacting Displacement Probes \u2014 Probe Advantages Versus Disadvantages <\/td>\n<\/tr>\n
425<\/td>\nTable B-2 Velocity Transducers \u2014 Transducer Advantages Versus Disadvantages
Table B-3 Accelerometers \u2014 Transducer Advantages Versus Disadvantages <\/td>\n<\/tr>\n
426<\/td>\nTable B-4 Combination Probe Attached to Bearing Housing \u2014 Transducer Advantages Versus Disadvantages
Table B-5 Shaft Rider \u2014 Transducer Advantages Versus Disadvantages <\/td>\n<\/tr>\n
427<\/td>\nB-2 CONTINUOUS VIBRATION MONITORING INSTRUMENTS
B-3 PERIODIC ANALYSIS INSTRUMENTATION <\/td>\n<\/tr>\n
428<\/td>\nPart 17 Performance Testing of Instrument Air Systems in Light-Water Reactor Power Plants <\/td>\n<\/tr>\n
429<\/td>\nPart 19 Preservice and Periodic Performance Testing of Pneumatically and Hydraulically Operated Valve Assemblies in Water-Cooled Reactor Nuclear Power Plants
1 INTRODUCTION
1.1 Scope
1.2 Exclusions
2 DEFINITIONS <\/td>\n<\/tr>\n
430<\/td>\n3 TEST GUIDANCE
3.1 Preservice Test Guidance
3.2 Performance Test Guidance
3.3 Equipment Replacement, Modification, Repair, and Maintenance Test Guidance
4 TEST METHODS
4.1 Prerequisites <\/td>\n<\/tr>\n
431<\/td>\n4.2 Instrument Calibration
4.3 Test Conditions
4.4 Limits and Precautions
4.5 Test Procedures
4.6 Test Parameters
4.7 Test Information <\/td>\n<\/tr>\n
432<\/td>\n5 ANALYSIS AND EVALUATION OF DATA
5.1 Acceptance Criteria
5.2 Analysis of Data
5.3 Evaluation of Data
5.4 Documentation of Analysis and Evaluation of Data
6 CORRECTIVE ACTION <\/td>\n<\/tr>\n
433<\/td>\nPart 23 Inservice Monitoring of Reactor Internals Vibration in Pressurized Water Reactor Power Plants
1 INTRODUCTION
1.1 Scope
1.2 Background
2 DEFINITIONS <\/td>\n<\/tr>\n
434<\/td>\nFigure 1 Schematic of a Pressurized Water Reactor (PWR) Showing Typical Sensor Arrangement <\/td>\n<\/tr>\n
435<\/td>\n3 REFERENCES <\/td>\n<\/tr>\n
436<\/td>\n4 INTERNALS VIBRATION EXCITATION SOURCES, RESPONSES, AND MODES
4.1 Sources of Excitation and Responses
4.2 Vibration Modes
5 SIGNAL DATABASE
5.1 Signals to Be Monitored and Reactor Conditions <\/td>\n<\/tr>\n
437<\/td>\n5.2 Data Acquisition
Figure 2 Beam and Shell Mode Vibration of a PWR Core Support Barrel <\/td>\n<\/tr>\n
438<\/td>\n5.3 Signal Sampling
5.4 Signal Recording
5.5 Data Reduction
Table 1 Sensor Types and Potential Applications in Reactor Noise Analysis <\/td>\n<\/tr>\n
439<\/td>\nFigure 3 Typical Components in a Signal Data Acquisition System
Table 2 Relationships Between Sampling Rates andAnalysis Results <\/td>\n<\/tr>\n
440<\/td>\n5.6 Data Storage
5.7 Documentation <\/td>\n<\/tr>\n
441<\/td>\n6 DATA REVIEW
6.1 Initial Data Set
6.2 Subsequent Data Sets <\/td>\n<\/tr>\n
443<\/td>\nPart 23, Nonmandatory Appendix A Discussion of Spectral Functions
A-1 NORMALIZED POWER SPECTRAL DENSITY (NPSD)
A-2 NORMALIZED ROOT MEAN SQUARE OF THE SIGNAL
A-3 NORMALIZED CROSS-POWER SPECTRAL DENSITY (NCPSD), COHERENCE (COH), AND PHASE (N) <\/td>\n<\/tr>\n
444<\/td>\nFigure A-1 Different Spectral Functions <\/td>\n<\/tr>\n
445<\/td>\nA-4 IN-PHASE AND OUT-OF-PHASE SIGNAL SEPARATION (MAYO, 1977) <\/td>\n<\/tr>\n
446<\/td>\nA-5 REFERENCES <\/td>\n<\/tr>\n
447<\/td>\nPart 23, Nonmandatory Appendix B Supporting Information on Component Vibrations
B-1 IN-CORE DETECTOR THIMBLES
B-2 BAFFLE JETTING <\/td>\n<\/tr>\n
448<\/td>\nB-3 FUEL ASSEMBLY VIBRATIONS
B-4 REFERENCE <\/td>\n<\/tr>\n
449<\/td>\nPart 23, Nonmandatory Appendix C Pump-Induced Vibrations
C-1 INTRODUCTION
C-2 CASE STUDY 1: COOLANT PUMP OPERATION CHARACTERISTICS
C-3 CASE STUDY 2: SPACE-TIME BEATING OF COOLANT PUMPS IN A MULTI-LOOP PWR PLANT <\/td>\n<\/tr>\n
450<\/td>\nC-4 REFERENCES
Figure C-1 Reactor Coolant System Arrangement \u2014 Plan View <\/td>\n<\/tr>\n
451<\/td>\nFigure C-2 Data Set I, 180 deg Phase NCPSD, A-D <\/td>\n<\/tr>\n
452<\/td>\nFigure C-3 Data Set II, 180 deg NCPSD, A-D and B-C <\/td>\n<\/tr>\n
453<\/td>\nFigure C-4 180 deg Phase NCPSD, X-Y
Figure C-5 Lissajous Figure of Ex-Core Neutron Noise Data Showing Motion of Reactor Core in a Multi-Loop Plant <\/td>\n<\/tr>\n
454<\/td>\nPart 23, Nonmandatory Appendix D Sampling Rate and Length of Data Record Requirement to Resolve a Spectral Peak <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":"

ASME OM-2020: Operation and Maintenance of Nuclear Power Plants<\/b><\/p>\n\n\n\n\n
Published By<\/td>\nPublication Date<\/td>\nNumber of Pages<\/td>\n<\/tr>\n
ASME<\/b><\/a><\/td>\n2020<\/td>\n457<\/td>\n<\/tr>\n<\/tbody>\n<\/table>\n","protected":false},"featured_media":248915,"template":"","meta":{"rank_math_lock_modified_date":false,"ep_exclude_from_search":false},"product_cat":[2643],"product_tag":[],"class_list":{"0":"post-248914","1":"product","2":"type-product","3":"status-publish","4":"has-post-thumbnail","6":"product_cat-asme","8":"first","9":"instock","10":"sold-individually","11":"shipping-taxable","12":"purchasable","13":"product-type-simple"},"_links":{"self":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product\/248914","targetHints":{"allow":["GET"]}}],"collection":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product"}],"about":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/types\/product"}],"wp:featuredmedia":[{"embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/media\/248915"}],"wp:attachment":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/media?parent=248914"}],"wp:term":[{"taxonomy":"product_cat","embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product_cat?post=248914"},{"taxonomy":"product_tag","embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product_tag?post=248914"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}