ISO 22854:2014
$36.40
Liquid petroleum products — Determination of hydrocarbon types and oxygenates in automotive-motor gasoline and in ethanol (E85) automotive fuel — Multidimensional gas chromatography method
Published By | Publication Date | Number of Pages |
ISO | 2014-03 | 28 |
ISO 22854:2014 specifies the gas chromatographic (GC) method for the determination of saturated, olefinic and aromatic hydrocarbons in automotive motor gasoline and automotive ethanol fuel (E85). Additionally, the benzene content, oxygenate compounds and the total oxygen content can be determined.
This International Standard defines two procedures, A and B.
Procedure A is applicable to automotive motor gasoline with a total volume fraction of aromatics of up to 50 %; a total volume fraction of olefins from about 1,5 % up to 30 %; a volume fraction of oxygenates, from 0,8 % up to 15 %; a total mass fraction of oxygen from about 1,5 % to about 3,7 %; and a volume fraction of benzene of up to 2 %. The system may be used for a volume fraction of ethers with 5 or more C atoms up to 22 % but the precision has not been established up to this level
Although this test method may be used to determine higher-olefin contents of up to 50 % (V/V), the precision for olefins was tested only in the range from about 1,5 % (V/V) to about 30 % (V/V).
Although specifically developed for the analysis of automotive motor gasoline that contains oxygenates, this test method may also be applied to other hydrocarbon streams having similar boiling ranges, such as naphthas and reformates.
Procedure B describes the procedure for the analysis of oxygenated groups (ethanol, methanol, ethers, C3 ? C5 alcohols) in (automotive) ethanol fuels containing an ethanol volume fraction between 50 % and 85 %. The gasoline is diluted with an oxygenate-free component to lower the ethanol content to a value below 20 % (V/V) before the analysis by GC. If the ethanol content is known, the dilution factor can be established accordingly. If it is unknown, it is advised to use a dilution of 4:1 when analysing the sample.
The sample may be fully analysed including hydrocarbons. Precision data for the diluted sample is only available for the oxygenated groups.