FEMA P 58 1 2012
$54.60
FEMA P-58-1 – Seismic Performance Assessment of Buildings – Volume 1 – Methodology
Published By | Publication Date | Number of Pages |
FEMA | 2012 | 278 |
None
PDF Catalog
PDF Pages | PDF Title |
---|---|
1 | FEMAP-58-1 Cover_Final |
2 | 00-V1_TitlePage_Final_508 |
4 | 01-V1_Foreword_Final_508 |
7 | 02-V1_Preface_Final_508.pdf |
9 | 03-V1_Dedication_Final_508 |
10 | 04-V1_TableofContents_Final_508 |
15 | 05-V1_ListofFigures_Final_508 |
20 | 06-V1_ListofTables_Final_508 |
23 | 07-V1_Ch01_Introduction_Final_508 1.1 Background |
24 | 1.2 The Need for Next-Generation Performance-Based Seismic Design Procedures |
25 | 1.3 The Performance-Based Design Process |
26 | 1.4 Scope |
28 | 1.5 Basis |
29 | 1.6 Limitations |
31 | 1.7 Products |
32 | 1.8 Organization and Content |
35 | 08-V1_Ch02_Methodology_Final_508 2.1 Introduction 2.2 Performance Measures |
36 | 2.3 Factors Affecting Performance |
37 | 2.4 Uncertainty in Performance Assessment |
39 | 2.5 Types of Performance Assessment 2.5.1 Intensity-Based Assessments 2.5.2 Scenario-Based Assessments 2.5.3 Time-Based Assessments |
40 | 2.6 The Methodology 2.6.1 Assemble Building Performance Model |
41 | 2.6.2 Define Earthquake Hazards |
42 | 2.6.3 Analyze Building Response |
43 | 2.6.4 Develop Collapse Fragility 2.6.5 Calculate Performance 2.6.5.1 Intensity-Based and Scenario-Based Assessments |
47 | 2.6.5.2 Time-Based Assessments |
49 | 09-V1_Ch03_Building Performance Model_Final_508 3.1 Introduction |
50 | 3.2 Basic Building Data |
51 | 3.3 Occupancy |
52 | 3.4 Population Models |
54 | 3.5 Fragility and Performance Groups 3.5.1 Fragility Groups |
58 | 3.5.2 Performance Groups |
59 | 3.5.3 Normative Quantities |
61 | 3.5.4 Fragility Units of Measure |
62 | 3.5.5 Rugged Components 3.6 Damage States |
63 | 3.6.1 Damage Logic |
64 | 3.6.2 Damage Correlation |
65 | 3.7 Demand Parameters |
66 | 3.8 Component Fragility 3.8.1 Fragility Functions |
68 | 3.8.2 Fragility Development |
69 | 3.8.3 Provided Fragility Functions |
71 | 3.8.4 Calculated Fragilities |
78 | 3.9 Consequence Functions |
79 | 3.9.1 Repair Costs |
81 | 3.9.2 Repair Time |
83 | 3.9.3 Unsafe Placarding 3.9.4 Casualties |
84 | 3.10 Fragility Specifications |
86 | 10-V1_Ch04_Earthquake Hazards_Final_508 |
98 | 11-V1_Ch05_Analysis_Final_508 5.1 Introduction 5.2 Nonlinear Response History Analysis |
99 | 5.2.1 Modeling |
105 | 5.2.2 Number of Analyses |
106 | 5.2.3 Floor Velocity and Floor Acceleration |
107 | 5.2.4 Quality Assurance 5.2.5 Uncertainty |
111 | 5.3 Simplified Analysis |
112 | 5.3.1 Modeling |
113 | 5.3.2 Simplified Analysis Procedure |
120 | 5.4 Residual Drift (5-25) |
122 | 12-V1_Ch06_Collapse Fragility_Final_508 6.1 Introduction 6.2 Nonlinear Response History Analysis |
123 | 6.2.1 Definition of Collapse 6.2.2 Mathematical Models In general, three-dimensional mathematical models should be used for collapse assessment. Two-dimensional (planar) models may be sufficient in cases where buildings have regular configurations, the translational response in each orthogonal direction … |
124 | 6.2.3 Incremental Dynamic Analysis |
125 | 6.2.4 Limited-Suite Nonlinear Analysis |
126 | 6.3 Simplified Nonlinear Analysis |
128 | 6.4 Judgment-Based Collapse Fragility |
130 | 6.5 Collapse Modes |
133 | 13-V1_Ch07_Calculate Performance_Final_508 7.1 Introduction |
134 | 7.2 Demand Simulation |
135 | 7.2.1 Nonlinear Response History Analysis |
136 | 7.2.2 Simplified Analysis |
137 | 7.3 Realization Initiation 7.4 Collapse Determination 7.4.1 Collapse Mode |
138 | 7.4.2 Casualties 7.4.3 Repair Cost and Repair Time |
139 | 7.5 Damage Calculation 7.5.1 Sequential Damage States |
140 | 7.5.2 Mutually Exclusive Damage States |
141 | 7.5.3 Simultaneous Damage States 7.6 Loss Calculation |
142 | 7.6.1 Unsafe Placard Loss Calculation |
143 | 7.7 Time-Based Assessments |
146 | 14-V1_Ch08_Decision Making_Final_508 8.1 Introduction 8.2 Code Equivalence |
147 | 8.3 Use of Scenario-Based Assessment Results |
149 | 8.4 Use of Time-Based Assessment Results |
152 | 8.5 Probable Maximum Loss |
154 | 15-V1_Appendix A_Probabilities_Final_508 A.1 Introduction A.2 Statistical Distributions A.2.1 Finite Populations and Discrete Outcomes |
155 | A.2.2 Combined Probabilities |
156 | A.2.3 Mass Distributions |
157 | A.2.4 Infinite Populations and Continuous Distributions |
159 | A.3 Common Forms of Distributions A.3.1 Normal Distributions |
160 | A.3.2 Cumulative Probability Functions |
161 | A.3.3 Lognormal Distributions |
164 | A.4 Probabilities over Time |
165 | 16-V1_Appendix B_Ground Shaking Hazards_Final_508 B.1 Introduction B.2 Ground Motion Prediction Equations |
166 | Western North America (WNA) |
167 | B.3 Fault Rupture Directivity and Maximum Direction Shaking |
168 | B.4 Probabilistic Seismic Hazard Assessment |
169 | B.4.1 Probabilistic Seismic Hazard Assessment Calculations |
176 | B.4.2 Inclusion of Rupture Directivity Effects |
177 | B.4.3 Deaggregation of Seismic Hazard Curves and Epsilon |
179 | B.4.4 Conditional Mean Spectrum and Spectral Shape |
182 | B.5 Vertical Earthquake Shaking |
183 | B.5.1 Procedure for Site Classes A, B, and C B.5.2 Procedure for Site Classes D and E |
184 | B.6 Soil-Structure Interaction |
185 | B.6.1 Direct Analysis B.6.2 Simplified Analysis |
187 | B.7 Alternative Procedure for Hazard Characterization to Explicitly Consider Ground Motion Dispersion in Nonlinear Response History Analysis |
190 | Similarly, spectral matching of pairs of motions can be used in lieu of selecting pairs of ground motions with geomean spectral shapes that are similar to CMSi. |
191 | 17-V1_Appendix C_Residual Drift_Final_508 Generation of Realizations for Loss Computations C.1 Introduction C.2 Past Research on Prediction of Residual Drift |
195 | C.3 Model to Calculate Residual Drift |
196 | C.4 Damage States for Residual Drift |
199 | 18-V1_Appendix D_Fragility Specifications_Final_508 D.1 Summary of Provided Fragility Specifications |
211 | 19-V1_Appendix E_Population_Final_508 E.1 Population Models |
218 | 20-V1_Appendix F_Normative Quantities_Final_508 F.1 Normative Quantities |
236 | 21-V1_Appendix G_Simulated Demands_Final_508 G.1 Introduction G.2 Nonlinear Response History Analysis |
237 | G.2.1 Algorithm |
239 | G.2.2 Sample Application of the Algorithm G.2.2.1 Generation of Realizations Using Full-Rank Covariance Matrices |
243 | G.2.2.2 Generation of Realizations Using Non-Full-Rank Covariance Matrices |
246 | G.2.3 Matlab Code |
248 | G.3 Simplified Analysis |
250 | 22-V1_Appendix H_Fragility Development_Final_508 H.1 Introduction H.1.1 Fragility Function Definition |
252 | H.1.2 Methods of Derivation |
253 | H.1.3 Documentation |
254 | H.2 Derivation of Fragility Parameters H.2.1 Actual Demand Data |
255 | H.2.2 Bounding Demand Data |
258 | H.2.3 Capable Demand Data |
259 | H.2.4 Derivation |
260 | H.2.5 Expert Opinion |
261 | H.2.6 Updating Fragility Functions with New Data |
262 | H.3 Assessing Fragility Function Quality |
263 | H.3.1 Competing Demand Parameters H.3.2 Elimination of Outliers |
264 | H.3.3 Goodness-of-Fit Testing |
265 | H.3.4 Adjusting Fragility Functions that Cross |
266 | H.3.5 Fragility Function Quality Levels |
267 | 23-V1_Appendix I_Rugged Components_Final_508 I.1 Rugged Components |
269 | 24-V1_Appendix J_Incremental Dynamic Analysis_Final_508 J.1 Introduction J.2 Procedure |
270 | J.3 Mathematical Models J.4 Ground Motion Selection and Scaling |
271 | J.4.1 Uniform Hazard Spectrum J.4.2 Conditional Mean Spectrum |
272 | J.5 Collapse Fragility Development |
274 | 25-V1_Appendix K_Sliding and Overturning_Final_508 K.1 Introduction K.2 Overturning |
277 | K.3 Sliding |