BSI PD CEN/CLC/TR 17603-31-12:2021
$215.11
Space Engineering. Thermal design handbook – Louvers
Published By | Publication Date | Number of Pages |
BSI | 2021 | 110 |
Thermal louvers are thermal control surfaces whose radiation characteristics can be varied in order to maintain the correct operating temperature of a component subject to cyclical changes in the amount of heat that it absorbs or generates.
The design and construction of louvers for space systems are described in this Part 12 and a clause is also dedicated to providing details on existing systems.
The Thermal design handbook is published in 16 Parts
TR 17603-31-01 Thermal design handbook – Part 1: View factors
TR 17603-31-02 Thermal design handbook – Part 2: Holes, Grooves and Cavities
TR 17603-31-03 Thermal design handbook – Part 3: Spacecraft Surface Temperature
TR 17603-31-04 Thermal design handbook – Part 4: Conductive Heat Transfer
TR 17603-31-05 Thermal design handbook – Part 5: Structural Materials: Metallic and Composite
TR 17603-31-06 Thermal design handbook – Part 6: Thermal Control Surfaces
TR 17603-31-07 Thermal design handbook – Part 7: Insulations
TR 17603-31-08 Thermal design handbook – Part 8: Heat Pipes
TR 17603-31-09 Thermal design handbook – Part 9: Radiators
TR 17603-31-10 Thermal design handbook – Part 10: Phase – Change Capacitors
TR 17603-31-11 Thermal design handbook – Part 11: Electrical Heating
TR 17603-31-12 Thermal design handbook – Part 12: Louvers
TR 17603-31-13 Thermal design handbook – Part 13: Fluid Loops
TR 17603-31-14 Thermal design handbook – Part 14: Cryogenic Cooling
TR 17603-31-15 Thermal design handbook – Part 15: Existing Satellites
TR 17603-31-16 Thermal design handbook – Part 16: Thermal Protection System
PDF Catalog
PDF Pages | PDF Title |
---|---|
2 | undefined |
10 | 1 Scope |
11 | 2 References |
12 | 3 Terms, definitions and symbols 3.1 Terms and definitions 3.2 Symbols |
17 | 4 General introduction |
18 | 5 Components of a louver 5.1 Blades |
20 | 5.2 Actuators 5.2.1 Bimetals 5.2.1.1 Introduction 5.2.1.2 Materials |
24 | 5.2.1.3 Deflection of spirals and helical coils. sensitivity |
25 | 5.2.1.4 Torsional moment of spirals and helical coils |
26 | 5.2.2 Bellows 5.2.2.1 Introduction |
27 | 5.2.2.2 Materials |
30 | 5.2.2.3 Convolutions and characteristics |
32 | 5.2.2.4 Spring rate 5.2.2.5 Effective area 5.2.2.6 Volume |
33 | 5.2.2.7 Response 5.2.2.8 Vibrations 5.2.2.9 Summary table concerning existing bellows |
37 | 5.2.3 Bourdons 5.2.3.1 Introduction 5.2.3.2 Materials and characteristics 5.2.3.3 Flexibility |
39 | 5.3 Sensors 5.3.1 Sensor location |
40 | 5.3.2 Coupling options 5.4 Structural elements 5.4.1 Actuator housing 5.4.2 Frames |
42 | 6 Ideal louvers 6.1 Sun-light operation 6.1.1 Introduction 6.1.2 Heat rejection capability |
45 | 6.1.3 Effective absorptance |
48 | 6.1.4 Effective emittance |
54 | 6.2 Shadow operation 6.2.1 Introduction |
55 | 6.2.2 Radiosity and temperature field of the blades |
57 | 6.2.3 Heat transfer through the louver |
68 | 7 Existing systems 7.1 Summary table |
78 | 7.2 Ats louvers 7.2.1 Introduction 7.2.2 Analytical calculations |
82 | 7.2.3 Tests |
85 | 7.3 Nimbus louvers 7.3.1 Introduction 7.3.2 Louvers of the sensory subsystem 7.3.2.1 Actuator and sensing element 7.3.2.2 Analytical thermal performance |
86 | 7.3.3 Louver of the control subsystem 7.3.3.1 Actuator and sensing element |
87 | 7.3.3.2 Analytical thermal performance |
88 | 7.3.4 Flight performance |
89 | 7.4 Snias louvers 7.4.1 Introduction |
90 | 7.4.2 Analytical calculations |
97 | 7.4.3 Tests |
100 | 7.4.4 The Bourdon tube used as an actuator in the SNIAS Louver system 7.4.4.1 Summary 7.4.4.2 Characteristics of the Bourdon spiral |
101 | 7.4.4.3 Set point and temperature ranges |
103 | 7.4.4.4 Response time of the sensing element |